
Matchings in Random Bipartite Graphs
with Applications to

Hashing-based Data Structures

Michael Rink

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Motivation

Given: set of n keys S := {x0, x1, . . . , xn−1}, S ⊆ U (finite universe)

, or
n key-value pairs f := {(x0, v0), (x1, v1), . . . , (xn−1, vn−1)}

Task: build a static data structure D, where for each x ∈ U
lookup(D, x) returns

x ∈ S x ∈ U \ S D

1 0 membership tester
ix ∈ [m] := {0, 1, . . . ,m− 1} arbitrary injective mapping
∀x ∈ S pairwise distinct

f(x) “x 6∈ S” dictionary
f(x) arbitrary retrieval DS

– 2 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Motivation

Given: set of n keys S := {x0, x1, . . . , xn−1}, S ⊆ U (finite universe)

, or
n key-value pairs f := {(x0, v0), (x1, v1), . . . , (xn−1, vn−1)}

Task: build a static data structure D, where for each x ∈ U
lookup(D, x) returns

x ∈ S x ∈ U \ S D

1 0 membership tester
ix ∈ [m] := {0, 1, . . . ,m− 1} arbitrary injective mapping
∀x ∈ S pairwise distinct

f(x) “x 6∈ S” dictionary
f(x) arbitrary retrieval DS

– 2 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Motivation

Given: set of n keys S := {x0, x1, . . . , xn−1}, S ⊆ U (finite universe)

, or
n key-value pairs f := {(x0, v0), (x1, v1), . . . , (xn−1, vn−1)}

Task: build a static data structure D, where for each x ∈ U
lookup(D, x) returns

x ∈ S x ∈ U \ S D

1 0 membership tester

ix ∈ [m] := {0, 1, . . . ,m− 1} arbitrary injective mapping
∀x ∈ S pairwise distinct

f(x) “x 6∈ S” dictionary
f(x) arbitrary retrieval DS

– 2 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Motivation

Given: set of n keys S := {x0, x1, . . . , xn−1}, S ⊆ U (finite universe)

, or
n key-value pairs f := {(x0, v0), (x1, v1), . . . , (xn−1, vn−1)}

Task: build a static data structure D, where for each x ∈ U
lookup(D, x) returns

x ∈ S x ∈ U \ S D

1 0 membership tester
ix ∈ [m] := {0, 1, . . . ,m− 1} arbitrary injective mapping
∀x ∈ S pairwise distinct

f(x) “x 6∈ S” dictionary
f(x) arbitrary retrieval DS

– 2 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Motivation

Given: set of n keys S := {x0, x1, . . . , xn−1}, S ⊆ U (finite universe), or
n key-value pairs f := {(x0, v0), (x1, v1), . . . , (xn−1, vn−1)}

Task: build a static data structure D, where for each x ∈ U
lookup(D, x) returns

x ∈ S x ∈ U \ S D

1 0 membership tester
ix ∈ [m] := {0, 1, . . . ,m− 1} arbitrary injective mapping
∀x ∈ S pairwise distinct

f(x) “x 6∈ S” dictionary
f(x) arbitrary retrieval DS

– 2 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Motivation

Given: set of n keys S := {x0, x1, . . . , xn−1}, S ⊆ U (finite universe), or
n key-value pairs f := {(x0, v0), (x1, v1), . . . , (xn−1, vn−1)}

Task: build a static data structure D, where for each x ∈ U
lookup(D, x) returns

x ∈ S x ∈ U \ S D

1 0 membership tester
ix ∈ [m] := {0, 1, . . . ,m− 1} arbitrary injective mapping
∀x ∈ S pairwise distinct

f(x) “x 6∈ S” dictionary

f(x) arbitrary retrieval DS

– 2 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Motivation

Given: set of n keys S := {x0, x1, . . . , xn−1}, S ⊆ U (finite universe), or
n key-value pairs f := {(x0, v0), (x1, v1), . . . , (xn−1, vn−1)}

Task: build a static data structure D, where for each x ∈ U
lookup(D, x) returns

x ∈ S x ∈ U \ S D

1 0 membership tester
ix ∈ [m] := {0, 1, . . . ,m− 1} arbitrary injective mapping
∀x ∈ S pairwise distinct

f(x) “x 6∈ S” dictionary
f(x) arbitrary retrieval DS

– 2 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)
I negligible space needs
I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)
I negligible space needs
I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)
I negligible space needs
I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)
I negligible space needs
I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal

I fully random on S
(uniform, independent)

I negligible space needs
I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)

I negligible space needs
I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)
I negligible space needs

I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)
I negligible space needs
I constant evaluation time

I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)
I negligible space needs
I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Abstract Representations

basic scheme
S t

6

5

4

3

2

1

0

x3

x2

x1

x0

binary matrix M

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6

Ax0

Ax1

Ax2

Ax3

1 1 1
1 1 1

1 1 1
1 1 1

bipartite graph B

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

hypergraph H

0 1 2

3 4 5

6

Ax0Ax1

Ax2

Ax3

– 4 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Abstract Representations

basic scheme
S t

6

5

4

3

2

1

0

x3

x2

x1

x0

binary matrix M

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6

Ax0

Ax1

Ax2

Ax3

1 1 1
1 1 1

1 1 1
1 1 1

bipartite graph B

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

hypergraph H

0 1 2

3 4 5

6

Ax0Ax1

Ax2

Ax3

– 4 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Abstract Representations

basic scheme
S t

6

5

4

3

2

1

0

x3

x2

x1

x0

binary matrix M

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6

Ax0

Ax1

Ax2

Ax3

1 1 1
1 1 1

1 1 1
1 1 1

bipartite graph B

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

hypergraph H

0 1 2

3 4 5

6

Ax0Ax1

Ax2

Ax3

– 4 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Abstract Representations

basic scheme
S t

6

5

4

3

2

1

0

x3

x2

x1

x0

binary matrix M

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6

Ax0

Ax1

Ax2

Ax3

1 1 1
1 1 1

1 1 1
1 1 1

bipartite graph B

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

hypergraph H

0 1 2

3 4 5

6

Ax0Ax1

Ax2

Ax3

– 4 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Topic

Interested in:
I maximum c = n/m, c = c(d), such that construction is successful

with high probability (fixed d)
I (expected) construction time for t as function of n (fixed m and d)

Main Contributions:
I analysis for non-uniform left degrees (edge sizes, row weights)
I algorithm design

Measurements:
I time for lookup(D, x) in number of cell probes
I space complexity in bits
I time complexity in word operations

– 5 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Topic

Interested in:
I maximum c = n/m, c = c(d), such that construction is successful

with high probability (fixed d)
I (expected) construction time for t as function of n (fixed m and d)

Main Contributions:
I analysis for non-uniform left degrees (edge sizes, row weights)
I algorithm design

Measurements:
I time for lookup(D, x) in number of cell probes
I space complexity in bits
I time complexity in word operations

– 5 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Topic

Interested in:
I maximum c = n/m, c = c(d), such that construction is successful

with high probability (fixed d)
I (expected) construction time for t as function of n (fixed m and d)

Main Contributions:
I analysis for non-uniform left degrees (edge sizes, row weights)
I algorithm design

Measurements:
I time for lookup(D, x) in number of cell probes
I space complexity in bits
I time complexity in word operations

– 5 –

Outline

Preliminaries

Dictionary and Membership

Retrieval and Injective Mapping

Next . . .

Preliminaries

Dictionary and Membership

Retrieval and Injective Mapping

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

The 2-Core
0 1 2

3 4 5

6 7 8

Algorithm: Peeling
Input: hypergraph H = ([m],E)
Output: maximum induced sub-hypergraph with minimum degree 2
while H has a node v of degree 6 1 do

if v is incident to an edge Ax then delete Ax
delete v

return H

Analogous procedure in other formulations B and M gives the
(equivalent) “2-core”.

– 8 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

The 2-Core
0 1 2

3 4 5

6

7 8

Algorithm: Peeling
Input: hypergraph H = ([m],E)
Output: maximum induced sub-hypergraph with minimum degree 2
while H has a node v of degree 6 1 do

if v is incident to an edge Ax then delete Ax
delete v

return H

Analogous procedure in other formulations B and M gives the
(equivalent) “2-core”.

– 8 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

The 2-Core
0 1 2

3 4 5

6

7 8

Algorithm: Peeling
Input: hypergraph H = ([m],E)
Output: maximum induced sub-hypergraph with minimum degree 2
while H has a node v of degree 6 1 do

if v is incident to an edge Ax then delete Ax
delete v

return H

Analogous procedure in other formulations B and M gives the
(equivalent) “2-core”.

– 8 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

The 2-Core
0 1

2

3 4 5

6

7 8

Algorithm: Peeling
Input: hypergraph H = ([m],E)
Output: maximum induced sub-hypergraph with minimum degree 2
while H has a node v of degree 6 1 do

if v is incident to an edge Ax then delete Ax
delete v

return H

Analogous procedure in other formulations B and M gives the
(equivalent) “2-core”.

– 8 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

The 2-Core
0 1

2

3 4 5

6

7 8

Algorithm: Peeling
Input: hypergraph H = ([m],E)
Output: maximum induced sub-hypergraph with minimum degree 2
while H has a node v of degree 6 1 do

if v is incident to an edge Ax then delete Ax
delete v

return H

Analogous procedure in other formulations B and M gives the
(equivalent) “2-core”.

– 8 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

The 2-Core
0

1 2

3 4 5

6

7 8

Algorithm: Peeling
Input: hypergraph H = ([m],E)
Output: maximum induced sub-hypergraph with minimum degree 2
while H has a node v of degree 6 1 do

if v is incident to an edge Ax then delete Ax
delete v

return H

Analogous procedure in other formulations B and M gives the
(equivalent) “2-core”.

– 8 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

The 2-Core
0

1 2

3 4 5

6

7 8

Algorithm: Peeling
Input: hypergraph H = ([m],E)
Output: maximum induced sub-hypergraph with minimum degree 2
while H has a node v of degree 6 1 do

if v is incident to an edge Ax then delete Ax
delete v

return H

Analogous procedure in other formulations B and M gives the
(equivalent) “2-core”.

– 8 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

The 2-Core
0

1 2

3 4

5

6

7

8

Algorithm: Peeling
Input: hypergraph H = ([m],E)
Output: maximum induced sub-hypergraph with minimum degree 2
while H has a node v of degree 6 1 do

if v is incident to an edge Ax then delete Ax
delete v

return H

Analogous procedure in other formulations B and M gives the
(equivalent) “2-core”.

– 8 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

The 2-Core
0

1 2

3 4

5

6

7

8

Algorithm: Peeling
Input: hypergraph H = ([m],E)
Output: maximum induced sub-hypergraph with minimum degree 2
while H has a node v of degree 6 1 do

if v is incident to an edge Ax then delete Ax
delete v

return H

Analogous procedure in other formulations B and M gives the
(equivalent) “2-core”.

– 8 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

2-core Appearance and Density

Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],. . .

Let d > 3 and n/m = c.

There is a convex “key function” key(λ) with
global minimum c0 such that with high probability the following holds:

I if c < c0 then H has an empty 2-core,
I if c > c0 then H has a non-empty 2-core.

There is a “density function” dens(λ) such that if c > c0, then the edge
density of the 2-core is tightly concentrated around dens(λ̃), where λ̃ is
the solution of c !

= key(λ).

c

λ

key(λ)

dens(λ)

λ̃

1.0

0.75

1.0

0.5 1.5 2.5

c1

c0

d=3

Interested in:
c0 and c1, the edge
density of H where the
edge density of its 2-
core is 1

– 9 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

2-core Appearance and Density

Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],. . .

Let d > 3 and n/m = c. There is a convex “key function” key(λ) with
global minimum c0 such that with high probability the following holds:

I if c < c0 then H has an empty 2-core,
I if c > c0 then H has a non-empty 2-core.

There is a “density function” dens(λ) such that if c > c0, then the edge
density of the 2-core is tightly concentrated around dens(λ̃), where λ̃ is
the solution of c !

= key(λ).

c

λ

key(λ)

dens(λ)

λ̃

1.0

0.75

1.0

0.5 1.5 2.5

c1

c0

d=3

Interested in:
c0 and c1, the edge
density of H where the
edge density of its 2-
core is 1

– 9 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

2-core Appearance and Density

Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],. . .

Let d > 3 and n/m = c. There is a convex “key function” key(λ) with
global minimum c0 such that with high probability the following holds:

I if c < c0 then H has an empty 2-core,
I if c > c0 then H has a non-empty 2-core.

There is a “density function” dens(λ) such that if c > c0, then the edge
density of the 2-core is tightly concentrated around dens(λ̃), where λ̃ is
the solution of c !

= key(λ).

c

λ

key(λ)

dens(λ)

λ̃

1.0

0.75

1.0

0.5 1.5 2.5

c1

c0

d=3

Interested in:
c0 and c1, the edge
density of H where the
edge density of its 2-
core is 1

– 9 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

2-core Appearance and Density

Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],. . .

Let d > 3 and n/m = c. There is a convex “key function” key(λ) with
global minimum c0 such that with high probability the following holds:

I if c < c0 then H has an empty 2-core,
I if c > c0 then H has a non-empty 2-core.

There is a “density function” dens(λ) such that if c > c0

, then the edge
density of the 2-core is tightly concentrated around dens(λ̃), where λ̃ is
the solution of c !

= key(λ).

c

λ

key(λ)

dens(λ)

λ̃

1.0

0.75

1.0

0.5 1.5 2.5

c1

c0

d=3

Interested in:
c0 and c1, the edge
density of H where the
edge density of its 2-
core is 1

– 9 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

2-core Appearance and Density

Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],. . .

Let d > 3 and n/m = c. There is a convex “key function” key(λ) with
global minimum c0 such that with high probability the following holds:

I if c < c0 then H has an empty 2-core,
I if c > c0 then H has a non-empty 2-core.

There is a “density function” dens(λ) such that if c > c0, then the edge
density of the 2-core is tightly concentrated around dens(λ̃)

, where λ̃ is
the solution of c !

= key(λ).

c

λ

key(λ)

dens(λ)

λ̃

1.0

0.75

1.0

0.5 1.5 2.5

c1

c0

d=3

Interested in:
c0 and c1, the edge
density of H where the
edge density of its 2-
core is 1

– 9 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

2-core Appearance and Density

Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],. . .

Let d > 3 and n/m = c. There is a convex “key function” key(λ) with
global minimum c0 such that with high probability the following holds:

I if c < c0 then H has an empty 2-core,
I if c > c0 then H has a non-empty 2-core.

There is a “density function” dens(λ) such that if c > c0, then the edge
density of the 2-core is tightly concentrated around dens(λ̃), where λ̃ is
the solution of c !

= key(λ).

c

λ

key(λ)

dens(λ)

λ̃

1.0

0.75

1.0

0.5 1.5 2.5

c1

c0

d=3

Interested in:
c0 and c1, the edge
density of H where the
edge density of its 2-
core is 1

– 9 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

2-core Appearance and Density

Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],. . .

Let d > 3 and n/m = c. There is a convex “key function” key(λ) with
global minimum c0 such that with high probability the following holds:

I if c < c0 then H has an empty 2-core,
I if c > c0 then H has a non-empty 2-core.

There is a “density function” dens(λ) such that if c > c0, then the edge
density of the 2-core is tightly concentrated around dens(λ̃), where λ̃ is
the solution of c !

= key(λ).

c

λ

key(λ)

dens(λ)

λ̃

1.0

0.75

1.0

0.5 1.5 2.5

c1

c0

d=3
Interested in:
c0 and c1, the edge
density of H where the
edge density of its 2-
core is 1

– 9 –

Next . . .

Preliminaries

Dictionary and Membership
Construction
Maximum Load
Algorithms
Summary

Retrieval and Injective Mapping
Construction
Algorithm
Maximum Load
Summary

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Multiple Choice Hash Table

d-ary Cuckoo Hashing [Fotakis, Pagh, Sanders, Spirakis, 2003]:

I membership tester:

. for all x from S store x in one cell of t whose
address is from Ax

. lookup(D, x) :=
[
∃a ∈ Ax : ta = x

]
I dictionary:

. analogously, store tuple (x, f(x))

I maximum one entry per cell
I cell probes: d worst-case, (d+ 1)/2 expected

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

– 11 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Multiple Choice Hash Table

d-ary Cuckoo Hashing [Fotakis, Pagh, Sanders, Spirakis, 2003]:

I membership tester:
. for all x from S store x in one cell of t whose

address is from Ax

. lookup(D, x) :=
[
∃a ∈ Ax : ta = x

]
I dictionary:

. analogously, store tuple (x, f(x))

I maximum one entry per cell
I cell probes: d worst-case, (d+ 1)/2 expected

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

– 11 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Multiple Choice Hash Table

d-ary Cuckoo Hashing [Fotakis, Pagh, Sanders, Spirakis, 2003]:

I membership tester:
. for all x from S store x in one cell of t whose

address is from Ax

. lookup(D, x) :=
[
∃a ∈ Ax : ta = x

]
I dictionary:

. analogously, store tuple (x, f(x))

I maximum one entry per cell
I cell probes: d worst-case, (d+ 1)/2 expected

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

– 11 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Multiple Choice Hash Table

d-ary Cuckoo Hashing [Fotakis, Pagh, Sanders, Spirakis, 2003]:

I membership tester:
. for all x from S store x in one cell of t whose

address is from Ax

. lookup(D, x) :=
[
∃a ∈ Ax : ta = x

]
I dictionary:

. analogously, store tuple (x, f(x))

I maximum one entry per cell
I cell probes: d worst-case, (d+ 1)/2 expected

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

– 11 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Multiple Choice Hash Table

d-ary Cuckoo Hashing [Fotakis, Pagh, Sanders, Spirakis, 2003]:

I membership tester:
. for all x from S store x in one cell of t whose

address is from Ax

. lookup(D, x) :=
[
∃a ∈ Ax : ta = x

]
I dictionary:

. analogously, store tuple (x, f(x))

I maximum one entry per cell
I cell probes: d worst-case, (d+ 1)/2 expected

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

– 11 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Multiple Choice Hash Table

d-ary Cuckoo Hashing [Fotakis, Pagh, Sanders, Spirakis, 2003]:

I membership tester:
. for all x from S store x in one cell of t whose

address is from Ax
. lookup(D, x) :=

[
∃a ∈ Ax : ta = x

]

I dictionary:
. analogously, store tuple (x, f(x))

I maximum one entry per cell
I cell probes: d worst-case, (d+ 1)/2 expected

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

– 11 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Multiple Choice Hash Table

d-ary Cuckoo Hashing [Fotakis, Pagh, Sanders, Spirakis, 2003]:

I membership tester:
. for all x from S store x in one cell of t whose

address is from Ax
. lookup(D, x) :=

[
∃a ∈ Ax : ta = x

]
I dictionary:

. analogously, store tuple (x, f(x))

I maximum one entry per cell
I cell probes: d worst-case, (d+ 1)/2 expected

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

– 11 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Multiple Choice Hash Table

d-ary Cuckoo Hashing [Fotakis, Pagh, Sanders, Spirakis, 2003]:

I membership tester:
. for all x from S store x in one cell of t whose

address is from Ax
. lookup(D, x) :=

[
∃a ∈ Ax : ta = x

]
I dictionary:

. analogously, store tuple (x, f(x))

I maximum one entry per cell

I cell probes: d worst-case, (d+ 1)/2 expected

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

– 11 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Multiple Choice Hash Table

d-ary Cuckoo Hashing [Fotakis, Pagh, Sanders, Spirakis, 2003]:

I membership tester:
. for all x from S store x in one cell of t whose

address is from Ax
. lookup(D, x) :=

[
∃a ∈ Ax : ta = x

]
I dictionary:

. analogously, store tuple (x, f(x))

I maximum one entry per cell
I cell probes: d worst-case, (d+ 1)/2 expected

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

– 11 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Requirements

Construction possible:
def
= injective mapping σ : S→ [m],

s.t. σ(x) ∈ Ax, for all x ∈ S

⇔ left-perfect matching in B

⇔ edge orientation in H with
indegree 6 1

⇔ n× n submatrix of M >
permutation matrix

binary matrix M

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6

Ax0

Ax1

Ax2

Ax3

1 1 1
1 1 1

1 1 1
1 1 1

basic scheme
S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

hypergraph H

0 1 2

3 4 5

6

Ax0Ax1

Ax2

Ax3

– 12 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Requirements

Construction possible:
def
= injective mapping σ : S→ [m],

s.t. σ(x) ∈ Ax, for all x ∈ S
⇔ left-perfect matching in B

⇔ edge orientation in H with
indegree 6 1

⇔ n× n submatrix of M >
permutation matrix

binary matrix M

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6

Ax0

Ax1

Ax2

Ax3

1 1 1
1 1 1

1 1 1
1 1 1

bipartite graph B

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

hypergraph H

0 1 2

3 4 5

6

Ax0Ax1

Ax2

Ax3

– 12 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Requirements

Construction possible:
def
= injective mapping σ : S→ [m],

s.t. σ(x) ∈ Ax, for all x ∈ S
⇔ left-perfect matching in B

⇔ edge orientation in H with
indegree 6 1

⇔ n× n submatrix of M >
permutation matrix

binary matrix M

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6

Ax0

Ax1

Ax2

Ax3

1 1 1
1 1 1

1 1 1
1 1 1

bipartite graph B

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

hypergraph H

0 1 2

3 4 5

6

Ax0Ax1

Ax2

Ax3

– 12 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Requirements

Construction possible:
def
= injective mapping σ : S→ [m],

s.t. σ(x) ∈ Ax, for all x ∈ S
⇔ left-perfect matching in B

⇔ edge orientation in H with
indegree 6 1

⇔ n× n submatrix of M >
permutation matrix

binary matrix M

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6

Ax0

Ax1

Ax2

Ax3

1 1 1
1 1 1

1 1 1
1 1 1

bipartite graph B

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

hypergraph H

0 1 2

3 4 5

6

Ax0Ax1

Ax2

Ax3

– 12 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Thresholds
Theorem: [Fotakis, Pagh, Sanders, Spirakis, 2003]

Let c = n/m. If d = Θ
(
ln
(1
1−c

))
, then with high probability (whp) B

admits a left-perfect matching.

Theorem: [Bohman and Kim, 2006, d = 4],[Frieze and Melsted, 2009],
[Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink, 2010],
[Fountoulakis and Panagiotou, 2010],

Let c = n/m and let d > 3. Then whp the following holds:

I if c < c1(d), then B admits a left-perfect matching.
I if c > c1(d), then B admits no left-perfect matching.

c1(d)

d

3 4 5 6 7 8 9 10
0.90

0.925

0.95

0.975

1.0

– 13 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Thresholds
Theorem: [Fotakis, Pagh, Sanders, Spirakis, 2003]

Let c = n/m. If d = Θ
(
ln
(1
1−c

))
, then with high probability (whp) B

admits a left-perfect matching.

Theorem: [Bohman and Kim, 2006, d = 4],[Frieze and Melsted, 2009],
[Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink, 2010],
[Fountoulakis and Panagiotou, 2010],

Let c = n/m and let d > 3. Then whp the following holds:

I if c < c1(d), then B admits a left-perfect matching.
I if c > c1(d), then B admits no left-perfect matching.

c1(d)

d

3 4 5 6 7 8 9 10
0.90

0.925

0.95

0.975

1.0

– 13 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Thresholds
Theorem: [Fotakis, Pagh, Sanders, Spirakis, 2003]

Let c = n/m. If d = Θ
(
ln
(1
1−c

))
, then with high probability (whp) B

admits a left-perfect matching.

Theorem: [Bohman and Kim, 2006, d = 4],[Frieze and Melsted, 2009],
[Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink, 2010],
[Fountoulakis and Panagiotou, 2010],

Let c = n/m and let d > 3. Then whp the following holds:
I if c < c1(d), then B admits a left-perfect matching.
I if c > c1(d), then B admits no left-perfect matching.

c1(d)

d

3 4 5 6 7 8 9 10
0.90

0.925

0.95

0.975

1.0

– 13 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Thresholds
Theorem: [Fotakis, Pagh, Sanders, Spirakis, 2003]

Let c = n/m. If d = Θ
(
ln
(1
1−c

))
, then with high probability (whp) B

admits a left-perfect matching.

Theorem: [Bohman and Kim, 2006, d = 4],[Frieze and Melsted, 2009],
[Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink, 2010],
[Fountoulakis and Panagiotou, 2010],

Let c = n/m and let d > 3. Then whp the following holds:
I if c < c1(d), then B admits a left-perfect matching.
I if c > c1(d), then B admits no left-perfect matching.

c1(d)

d

3 4 5 6 7 8 9 10
0.90

0.925

0.95

0.975

1.0

– 13 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

New: Optimality
Question: Given a target average left degree d, can we improve the
success probability using different left degrees dx compared to using the
same left degree?

d =
1
n
·
∑
x∈S

dx

Theorem: [Dietzfelbinger and Rink, 2012, duplicates allowed]

Let d > 2 be the average left degree of B.
I If d is integral, then the optimal choice is dx = d for all x ∈ S.
I If d is non-integral, then it is optimal if the fraction of nodes with

degree

{
bdc
dde

is tightly concentrated around

{
dde− d
d− bdc

.

Proof idea:
* Degree of each left node is random variable Dx with separate pmf.
* Fix B, but omit 2 left nodes x,y. Compare probability for a matching

under slight changes of pmfx and pmfy.

– 14 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

New: Optimality
Question: Given a target average left degree d, can we improve the
success probability using different left degrees dx compared to using the
same left degree?

d =
1
n
·
∑
x∈S

dx

Theorem: [Dietzfelbinger and Rink, 2012, duplicates allowed]

Let d > 2 be the average left degree of B.
I If d is integral, then the optimal choice is dx = d for all x ∈ S.
I If d is non-integral, then it is optimal if the fraction of nodes with

degree

{
bdc
dde

is tightly concentrated around

{
dde− d
d− bdc

.

Proof idea:
* Degree of each left node is random variable Dx with separate pmf.
* Fix B, but omit 2 left nodes x,y. Compare probability for a matching

under slight changes of pmfx and pmfy.

– 14 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

New: Optimality
Question: Given a target average left degree d, can we improve the
success probability using different left degrees dx compared to using the
same left degree?

d =
1
n
·
∑
x∈S

dx

Theorem: [Dietzfelbinger and Rink, 2012, duplicates allowed]

Let d > 2 be the average left degree of B.
I If d is integral, then the optimal choice is dx = d for all x ∈ S.
I If d is non-integral, then it is optimal if the fraction of nodes with

degree

{
bdc
dde

is tightly concentrated around

{
dde− d
d− bdc

.

Proof idea:
* Degree of each left node is random variable Dx with separate pmf.
* Fix B, but omit 2 left nodes x,y. Compare probability for a matching

under slight changes of pmfx and pmfy.

– 14 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

New: Optimality
Question: Given a target average left degree d, can we improve the
success probability using different left degrees dx compared to using the
same left degree?

d =
1
n
·
∑
x∈S

dx

Theorem: [Dietzfelbinger and Rink, 2012, duplicates allowed]

Let d > 2 be the average left degree of B.
I If d is integral, then the optimal choice is dx = d for all x ∈ S.
I If d is non-integral, then it is optimal if the fraction of nodes with

degree

{
bdc
dde

is tightly concentrated around

{
dde− d
d− bdc

.

Proof idea:
* Degree of each left node is random variable Dx with separate pmf.
* Fix B, but omit 2 left nodes x,y. Compare probability for a matching

under slight changes of pmfx and pmfy.
– 14 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Thresholds for Mixed Degrees

Theorem: [Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink, 2010]

The results for uniform left degrees d > 3 can be extended to prove
thresholds c1(d) for mixed left degrees d > 2.

left degrees dx concentrated around d

c1(d)

d

3 4 5 6 7 8 9 10
0.90

0.925

0.95

0.975

1.0

– 15 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Thresholds for Mixed Degrees

Theorem: [Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink, 2010]

The results for uniform left degrees d > 3 can be extended to prove
thresholds c1(d) for mixed left degrees d > 2.

left degrees dx concentrated around d

c1(d)

d

3 4 5 6 7 8 9 10
0.90

0.925

0.95

0.975

1.0

– 15 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Standard Augmenting Path Algorithm

Hopcroft-Karp Algorithm [Hopcroft and Karp, 1973]:

I Results by [Bast, Mehlhorn, Schäfer, Tamaki, 2004] indicate that in our
situation the running time is O(n · logn) whp.

Question: Can we do better, in linear time?

– 16 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Standard Augmenting Path Algorithm

Hopcroft-Karp Algorithm [Hopcroft and Karp, 1973]:
I Results by [Bast, Mehlhorn, Schäfer, Tamaki, 2004] indicate that in our

situation the running time is O(n · logn) whp.

Question: Can we do better, in linear time?

– 16 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Standard Augmenting Path Algorithm

Hopcroft-Karp Algorithm [Hopcroft and Karp, 1973]:
I Results by [Bast, Mehlhorn, Schäfer, Tamaki, 2004] indicate that in our

situation the running time is O(n · logn) whp.

Question: Can we do better, in linear time?

– 16 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Greedy Approach
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

I adaption of “Selfless Algorithm” by [Sanders, 2004]

I running time O(n)

1

2
3

2
3

2
3

1
2
+

1
3

1
2
+

1
3

0 1 2

3 4 5

7 8

Algorithm: Generalized Selfless
Input: hypergraph H

Output: matching in B

repeat
if a node v has degree 1 then choose v

else
choose node v of minimum priority

π(v) =
∑
Ax3v

1
|Ax|

if minimum priority > 1 then return failure

choose edge Ax 3 v

with min cardinality |Ax|

match x and v
delete Ax and v

until all edges have been deleted at the end

– 17 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Greedy Approach
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

I adaption of “Selfless Algorithm” by [Sanders, 2004]

I running time O(n)

1

2
3

2
3

2
3

1
2
+

1
3

1
2
+

1
3

0 1 2

3 4 5

7 8

Algorithm: Generalized Selfless
Input: hypergraph H

Output: matching in B

repeat
if a node v has degree 1 then choose v

else
choose node v of minimum priority

π(v) =
∑
Ax3v

1
|Ax|

if minimum priority > 1 then return failure

choose edge Ax 3 v

with min cardinality |Ax|

match x and v
delete Ax and v

until all edges have been deleted at the end

– 17 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Greedy Approach
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

I adaption of “Selfless Algorithm” by [Sanders, 2004]

I running time O(n)

1

2
3

2
3

2
3

1
2
+

1
3

1
2
+

1
3

0 1

2

3 4 5

7 8

Algorithm: Generalized Selfless
Input: hypergraph H

Output: matching in B

repeat
if a node v has degree 1 then choose v

else
choose node v of minimum priority

π(v) =
∑
Ax3v

1
|Ax|

if minimum priority > 1 then return failure

choose edge Ax 3 v

with min cardinality |Ax|

match x and v
delete Ax and v

until all edges have been deleted at the end

– 17 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Greedy Approach
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

I adaption of “Selfless Algorithm” by [Sanders, 2004]

I running time O(n)

1

2
3

2
3

2
3

1
2
+

1
3

1
2
+

1
3

0 1

2

3 4 5

7 8

Algorithm: Generalized Selfless
Input: hypergraph H

Output: matching in B

repeat
if a node v has degree 1 then choose v

else
choose node v of minimum priority

π(v) =
∑
Ax3v

1
|Ax|

if minimum priority > 1 then return failure

choose edge Ax 3 v

with min cardinality |Ax|

match x and v
delete Ax and v

until all edges have been deleted at the end

– 17 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Greedy Approach
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

I adaption of “Selfless Algorithm” by [Sanders, 2004]

I running time O(n)

1

2
3

2
3

2
3

1
2
+

1
3

1
2
+

1
3

0

1 2

3 4 5

7 8

Algorithm: Generalized Selfless
Input: hypergraph H

Output: matching in B

repeat
if a node v has degree 1 then choose v

else
choose node v of minimum priority

π(v) =
∑
Ax3v

1
|Ax|

if minimum priority > 1 then return failure

choose edge Ax 3 v

with min cardinality |Ax|

match x and v
delete Ax and v

until all edges have been deleted at the end

– 17 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Greedy Approach
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

I adaption of “Selfless Algorithm” by [Sanders, 2004]

I running time O(n)

1

2
3

2
3

2
3

1
2
+

1
3

1
2
+

1
3

0

1 2

3 4 5

7 8

Algorithm: Generalized Selfless
Input: hypergraph H

Output: matching in B

repeat
if a node v has degree 1 then choose v

else
choose node v of minimum priority

π(v) =
∑
Ax3v

1
|Ax|

if minimum priority > 1 then return failure

choose edge Ax 3 v

with min cardinality |Ax|

match x and v
delete Ax and v

until all edges have been deleted at the end

– 17 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Greedy Approach
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

I adaption of “Selfless Algorithm” by [Sanders, 2004]

I running time O(n)

1

2
3

2
3

2
3

1
2
+

1
3

1
2
+

1
3

0

1 2

3 4 5

7

8

Algorithm: Generalized Selfless
Input: hypergraph H

Output: matching in B

repeat
if a node v has degree 1 then choose v

else
choose node v of minimum priority

π(v) =
∑
Ax3v

1
|Ax|

if minimum priority > 1 then return failure

choose edge Ax 3 v

with min cardinality |Ax|

match x and v
delete Ax and v

until all edges have been deleted at the end

– 17 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Greedy Approach
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

I adaption of “Selfless Algorithm” by [Sanders, 2004]

I running time O(n)

1

2
3

2
3

2
3

1
2
+

1
3

1
2
+

1
3

0

1 2

3 4 5

7

8

Algorithm: Generalized Selfless
Input: hypergraph H

Output: matching in B

repeat
if a node v has degree 1 then choose v

else
choose node v of minimum priority

π(v) =
∑
Ax3v

1
|Ax|

if minimum priority > 1 then return failure

choose edge Ax 3 v

with min cardinality |Ax|

match x and v
delete Ax and v

until all edges have been deleted at the end

– 17 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Greedy Approach
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

I adaption of “Selfless Algorithm” by [Sanders, 2004]

I running time O(n)

1

2
3

2
3

2
3

1
2
+

1
3

1
2
+

1
3

0

1 2

3 4 5

7

8

Algorithm: Generalized Selfless
Input: hypergraph H

Output: matching in B

repeat
if a node v has degree 1 then choose v

else
choose node v of minimum priority

π(v) =
∑
Ax3v

1
|Ax|

if minimum priority > 1 then return failure

choose edge Ax 3 v

with min cardinality |Ax|

match x and v
delete Ax and v

until all edges have been deleted at the end

– 17 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Greedy Approach
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

I adaption of “Selfless Algorithm” by [Sanders, 2004]

I running time O(n)

1

2
3

2
3

2
3

1
2
+

1
3

1
2
+

1
3

0

1 2

3 4 5

7

8

Algorithm: Generalized Selfless
Input: hypergraph H

Output: matching in B

repeat
if a node v has degree 1 then choose v

else
choose node v of minimum priority

π(v) =
∑
Ax3v

1
|Ax|

if minimum priority > 1 then return failure

choose edge Ax 3 v with min cardinality |Ax|

match x and v
delete Ax and v

until all edges have been deleted at the end

– 17 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Greedy Approach
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

I adaption of “Selfless Algorithm” by [Sanders, 2004]

I running time O(n)

1

2
3

2
3

2
3

1
2
+

1
3

1
2
+

1
3

0

1 2

3

4

5

7

8

Algorithm: Generalized Selfless
Input: hypergraph H

Output: matching in B

repeat
if a node v has degree 1 then choose v

else
choose node v of minimum priority

π(v) =
∑
Ax3v

1
|Ax|

if minimum priority > 1 then return failure

choose edge Ax 3 v with min cardinality |Ax|

match x and v
delete Ax and v

until all edges have been deleted at the end

– 17 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Greedy Approach
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

I adaption of “Selfless Algorithm” by [Sanders, 2004]

I running time O(n)

1

2
3

2
3

2
3

1
2
+

1
3

1
2
+

1
3

0

1 2

3

4

5

7

8

Algorithm: Generalized Selfless
Input: hypergraph H

Output: matching in B

repeat
if a node v has degree 1 then choose v

else
choose node v of minimum priority

π(v) =
∑
Ax3v

1
|Ax|

if minimum priority > 1 then return failure

choose edge Ax 3 v with min cardinality |Ax|

match x and v
delete Ax and v

until all edges have been deleted at the end

– 17 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Greedy Approach
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

I adaption of “Selfless Algorithm” by [Sanders, 2004]

I running time O(n)

1

2
3

2
3

2
3

1
2
+

1
3

1
2
+

1
3

0

1 2

3

4

5

7

8

Algorithm: Generalized Selfless
Input: hypergraph H

Output: matching in B

repeat
if a node v has degree 1 then choose v

else
choose node v of minimum priority

π(v) =
∑
Ax3v

1
|Ax|

if minimum priority > 1 then return failure

choose edge Ax 3 v with min cardinality |Ax|

match x and v
delete Ax and v

until all edges have been deleted at the end

– 17 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Heuristic vs Optimal Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.916 0.9165 0.917 0.9175 0.918 0.9185 0.919 0.9195

fa
ilu
re

ra
te

am
on

g
10
0
at
te
m
pt
s

c

aHC = 0.917919

aGS = 0.91785

Generalized Selfless (GS)
σ(c;aGS,bGS)
Hopcroft-Karp (HC)
σ(c;aHC,bHC)

m = 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.916 0.9165 0.917 0.9175 0.918 0.9185 0.919 0.9195

fa
ilu
re

ra
te

am
on

g
10
0
at
te
m
pt
s

c

aHC = 0.917929

aGS = 0.917923

Generalized Selfless (GS)
σ(c;aGS,bGS)
Hopcroft-Karp (HC)
σ(c;aHC,bHC)

m = 106

d = 3; theoretical threshold c1(d) ≈ 0.91794, interval size 0.004

Running times for GS and HC in seconds on Intel Xeon 3GHz:

m\c 0.916 0.917 0.918 0.919

105 0.11 0.64 0.11 0.77 0.11 0.88 0.11 0.93
106 1.74 9.34 1.75 10.99 1.76 16.36 1.76 16.85

– 18 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Heuristic vs Optimal Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.916 0.9165 0.917 0.9175 0.918 0.9185 0.919 0.9195

fa
ilu
re

ra
te

am
on

g
10
0
at
te
m
pt
s

c

aHC = 0.917919

aGS = 0.91785

Generalized Selfless (GS)
σ(c;aGS,bGS)
Hopcroft-Karp (HC)
σ(c;aHC,bHC)

m = 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.916 0.9165 0.917 0.9175 0.918 0.9185 0.919 0.9195

fa
ilu
re

ra
te

am
on

g
10
0
at
te
m
pt
s

c

aHC = 0.917929

aGS = 0.917923

Generalized Selfless (GS)
σ(c;aGS,bGS)
Hopcroft-Karp (HC)
σ(c;aHC,bHC)

m = 106

d = 3; theoretical threshold c1(d) ≈ 0.91794, interval size 0.004

Running times for GS and HC in seconds on Intel Xeon 3GHz:

m\c 0.916 0.917 0.918 0.919

105 0.11 0.64 0.11 0.77 0.11 0.88 0.11 0.93
106 1.74 9.34 1.75 10.99 1.76 16.36 1.76 16.85

– 18 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Heuristic vs Optimal Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.916 0.9165 0.917 0.9175 0.918 0.9185 0.919 0.9195

fa
ilu
re

ra
te

am
on

g
10
0
at
te
m
pt
s

c

aHC = 0.917919

aGS = 0.91785

Generalized Selfless (GS)
σ(c;aGS,bGS)
Hopcroft-Karp (HC)
σ(c;aHC,bHC)

m = 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.916 0.9165 0.917 0.9175 0.918 0.9185 0.919 0.9195

fa
ilu
re

ra
te

am
on

g
10
0
at
te
m
pt
s

c

aHC = 0.917929

aGS = 0.917923

Generalized Selfless (GS)
σ(c;aGS,bGS)
Hopcroft-Karp (HC)
σ(c;aHC,bHC)

m = 106

d = 3; theoretical threshold c1(d) ≈ 0.91794, interval size 0.004

Running times for GS and HC in seconds on Intel Xeon 3GHz:

m\c 0.916 0.917 0.918 0.919

105 0.11 0.64 0.11 0.77 0.11 0.88 0.11 0.93
106 1.74 9.34 1.75 10.99 1.76 16.36 1.76 16.85

– 18 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Heuristic vs Optimal Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.916 0.9165 0.917 0.9175 0.918 0.9185 0.919 0.9195

fa
ilu
re

ra
te

am
on

g
10
0
at
te
m
pt
s

c

aHC = 0.917919

aGS = 0.91785

Generalized Selfless (GS)
σ(c;aGS,bGS)
Hopcroft-Karp (HC)
σ(c;aHC,bHC)

m = 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.916 0.9165 0.917 0.9175 0.918 0.9185 0.919 0.9195

fa
ilu
re

ra
te

am
on

g
10
0
at
te
m
pt
s

c

aHC = 0.917929

aGS = 0.917923

Generalized Selfless (GS)
σ(c;aGS,bGS)
Hopcroft-Karp (HC)
σ(c;aHC,bHC)

m = 106

d = 3; theoretical threshold c1(d) ≈ 0.91794, interval size 0.004

Running times for GS and HC in seconds on Intel Xeon 3GHz:

m\c 0.916 0.917 0.918 0.919

105 0.11 0.64 0.11 0.77 0.11 0.88 0.11 0.93

106 1.74 9.34 1.75 10.99 1.76 16.36 1.76 16.85

– 18 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Heuristic vs Optimal Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.916 0.9165 0.917 0.9175 0.918 0.9185 0.919 0.9195

fa
ilu
re

ra
te

am
on

g
10
0
at
te
m
pt
s

c

aHC = 0.917919

aGS = 0.91785

Generalized Selfless (GS)
σ(c;aGS,bGS)
Hopcroft-Karp (HC)
σ(c;aHC,bHC)

m = 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.916 0.9165 0.917 0.9175 0.918 0.9185 0.919 0.9195

fa
ilu
re

ra
te

am
on

g
10
0
at
te
m
pt
s

c

aHC = 0.917929

aGS = 0.917923

Generalized Selfless (GS)
σ(c;aGS,bGS)
Hopcroft-Karp (HC)
σ(c;aHC,bHC)

m = 106

d = 3; theoretical threshold c1(d) ≈ 0.91794, interval size 0.004

Running times for GS and HC in seconds on Intel Xeon 3GHz:

m\c 0.916 0.917 0.918 0.919

105 0.11 0.64 0.11 0.77 0.11 0.88 0.11 0.93
106 1.74 9.34 1.75 10.99 1.76 16.36 1.76 16.85

– 18 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Summary

Performance:
I space utilization

. membership: 1/c · n · log|U|

. dictionary: 1/c · n · (log|U|+ log|V |)

I construction time: O(n)
(avg. in experiments)

I cell probes: O
(
ln
(1
1−c

))

d 2 3 4 5 . . . O(log(n))

1/c 2.01 1.09 1.03 1.01 . . . 1

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

Open: Proof that if B admits a matching, then whp the Generalized
Selfless Algorithm finds a matching.

– 19 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Summary

Performance:
I space utilization

. membership: 1/c · n · log|U|

. dictionary: 1/c · n · (log|U|+ log|V |)

I construction time: O(n)
(avg. in experiments)

I cell probes: O
(
ln
(1
1−c

))

d 2 3 4 5 . . . O(log(n))

1/c 2.01 1.09 1.03 1.01 . . . 1

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

Open: Proof that if B admits a matching, then whp the Generalized
Selfless Algorithm finds a matching.

– 19 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Summary

Performance:
I space utilization

. membership: 1/c · n · log|U|

. dictionary: 1/c · n · (log|U|+ log|V |)

I construction time: O(n)
(avg. in experiments)

I cell probes: O
(
ln
(1
1−c

))
d 2 3 4 5 . . . O(log(n))

1/c 2.01 1.09 1.03 1.01 . . . 1

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

Open: Proof that if B admits a matching, then whp the Generalized
Selfless Algorithm finds a matching.

– 19 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Summary

Performance:
I space utilization

. membership: 1/c · n · log|U|

. dictionary: 1/c · n · (log|U|+ log|V |)

I construction time: O(n)
(avg. in experiments)

I cell probes: O
(
ln
(1
1−c

))
d 2 3 4 5 . . . O(log(n))

1/c 2.01 1.09 1.03 1.01 . . . 1

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

Open: Proof that if B admits a matching, then whp the Generalized
Selfless Algorithm finds a matching.

– 19 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Summary

Performance:
I space utilization

. membership: 1/c · n · log|U|

. dictionary: 1/c · n · (log|U|+ log|V |)

I construction time: O(n)
(avg. in experiments)

I cell probes: O
(
ln
(1
1−c

))
d 2 3 4 5 . . . O(log(n))

1/c 2.01 1.09 1.03 1.01 . . . 1

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

x0

x1

x2

x3

Open: Proof that if B admits a matching, then whp the Generalized
Selfless Algorithm finds a matching.

– 19 –

Next . . .

Preliminaries

Dictionary and Membership
Construction
Maximum Load
Algorithms
Summary

Retrieval and Injective Mapping
Construction
Algorithm
Maximum Load
Summary

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Retrieval Data Structure

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004],
Basic Retrieval Data Structure [Dietzfelbinger and Pagh, 2008]:

I Assume: (V,⊕) is an abelian group
I Given f : S→ V, build vector v = (f(xi))i∈[n]

and solve linear system

M · t = v

I lookup(D, x) :=
⊕
a∈Ax

ta

(V ,⊕)=(Z6,+)

v=(2,1,5,5)

(5+0+3) mod 6=2

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

0

5

5

1

0

3

1

– 21 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Retrieval Data Structure

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004],
Basic Retrieval Data Structure [Dietzfelbinger and Pagh, 2008]:

I Assume: (V,⊕) is an abelian group

I Given f : S→ V, build vector v = (f(xi))i∈[n]

and solve linear system

M · t = v

I lookup(D, x) :=
⊕
a∈Ax

ta

(V ,⊕)=(Z6,+)

v=(2,1,5,5)

(5+0+3) mod 6=2

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

0

5

5

1

0

3

1

– 21 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Retrieval Data Structure

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004],
Basic Retrieval Data Structure [Dietzfelbinger and Pagh, 2008]:

I Assume: (V,⊕) is an abelian group
I Given f : S→ V, build vector v = (f(xi))i∈[n]

and solve linear system

M · t = v

I lookup(D, x) :=
⊕
a∈Ax

ta

(V ,⊕)=(Z6,+)

v=(2,1,5,5)

(5+0+3) mod 6=2

S t

6

5

4

3

2

1

0

x3

x2

x1

x0

0

5

5

1

0

3

1

– 21 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Retrieval Data Structure

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004],
Basic Retrieval Data Structure [Dietzfelbinger and Pagh, 2008]:

I Assume: (V,⊕) is an abelian group
I Given f : S→ V, build vector v = (f(xi))i∈[n]

and solve linear system

M · t = v

I lookup(D, x) :=
⊕
a∈Ax

ta

(V ,⊕)=(Z6,+)

v=(2,1,5,5)

(5+0+3) mod 6=2

S t

6

5

4

3

2

1

0

x3

x2

x1

x0 0

5

5

1

0

3

1

– 21 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Retrieval Data Structure

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004],
Basic Retrieval Data Structure [Dietzfelbinger and Pagh, 2008]:

I Assume: (V,⊕) is an abelian group
I Given f : S→ V, build vector v = (f(xi))i∈[n]

and solve linear system

M · t = v

I lookup(D, x) :=
⊕
a∈Ax

ta

(V ,⊕)=(Z6,+)

v=(2,1,5,5)

(5+0+3) mod 6=2

S t

6

5

4

3

2

1

0

x3

x2

x1

x0 0

5

5

1

0

3

1

– 21 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Injective Mapping

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004],
Perfect Hash Function [Botelho, Pagh, Ziviani, 2007], more general [Rink, 2013]:

I given S and range m ′ of injective mapping
I build bipartite graph B ′

. left node set S, right node set [m ′]

. edges given via hash functions h ′i(x), i ∈ [d ′]

I determine matching in B ′

I build vector v of indices ι(x), where {x,h ′ι(x)}
is matching edge

I build retrieval data structure for v

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0

v=(0,1,1,2)

– 22 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Injective Mapping

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004],
Perfect Hash Function [Botelho, Pagh, Ziviani, 2007], more general [Rink, 2013]:

I given S and range m ′ of injective mapping

I build bipartite graph B ′

. left node set S, right node set [m ′]

. edges given via hash functions h ′i(x), i ∈ [d ′]

I determine matching in B ′

I build vector v of indices ι(x), where {x,h ′ι(x)}
is matching edge

I build retrieval data structure for v

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0

v=(0,1,1,2)

– 22 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Injective Mapping

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004],
Perfect Hash Function [Botelho, Pagh, Ziviani, 2007], more general [Rink, 2013]:

I given S and range m ′ of injective mapping
I build bipartite graph B ′

. left node set S, right node set [m ′]

. edges given via hash functions h ′i(x), i ∈ [d ′]

I determine matching in B ′

I build vector v of indices ι(x), where {x,h ′ι(x)}
is matching edge

I build retrieval data structure for v

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0

v=(0,1,1,2)

– 22 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Injective Mapping

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004],
Perfect Hash Function [Botelho, Pagh, Ziviani, 2007], more general [Rink, 2013]:

I given S and range m ′ of injective mapping
I build bipartite graph B ′

. left node set S, right node set [m ′]

. edges given via hash functions h ′i(x), i ∈ [d ′]

I determine matching in B ′

I build vector v of indices ι(x), where {x,h ′ι(x)}
is matching edge

I build retrieval data structure for v

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

– 22 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Injective Mapping

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004],
Perfect Hash Function [Botelho, Pagh, Ziviani, 2007], more general [Rink, 2013]:

I given S and range m ′ of injective mapping
I build bipartite graph B ′

. left node set S, right node set [m ′]

. edges given via hash functions h ′i(x), i ∈ [d ′]

I determine matching in B ′

I build vector v of indices ι(x), where {x,h ′ι(x)}
is matching edge

I build retrieval data structure for v

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

– 22 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Injective Mapping

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004],
Perfect Hash Function [Botelho, Pagh, Ziviani, 2007], more general [Rink, 2013]:

I given S and range m ′ of injective mapping
I build bipartite graph B ′

. left node set S, right node set [m ′]

. edges given via hash functions h ′i(x), i ∈ [d ′]

I determine matching in B ′

I build vector v of indices ι(x), where {x,h ′ι(x)}
is matching edge

I build retrieval data structure for v

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

– 22 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Requirements (1)

Construction possible:

⇐ M has full row rank n, i.e. n× n submatrix with non-zero
determinant in F2

– 23 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Connections

Theorem: [Dietzfelbinger et al., 2010] based on [Dubois and Mandler, 2002]

The density threshold c = n/m up to which whp M has full row rank
is equivalent to c1, the threshold where whp the edge density of the
2-core of H grows beyond 1.

Problem: Solving a linear system is harder than determining a matching.

I general upper bound O(n3) by Gaussian elimination
I in our situation maybe O(n2), e.g. [Wiedemann, 1986]

Question: How can we reach linear running time?

– 24 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Connections

Theorem: [Dietzfelbinger et al., 2010] based on [Dubois and Mandler, 2002]

The density threshold c = n/m up to which whp M has full row rank
is equivalent to c1, the threshold where whp the edge density of the
2-core of H grows beyond 1.

Problem: Solving a linear system is harder than determining a matching.

I general upper bound O(n3) by Gaussian elimination
I in our situation maybe O(n2), e.g. [Wiedemann, 1986]

Question: How can we reach linear running time?

– 24 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Connections

Theorem: [Dietzfelbinger et al., 2010] based on [Dubois and Mandler, 2002]

The density threshold c = n/m up to which whp M has full row rank
is equivalent to c1, the threshold where whp the edge density of the
2-core of H grows beyond 1.

Problem: Solving a linear system is harder than determining a matching.

I general upper bound O(n3) by Gaussian elimination
I in our situation maybe O(n2), e.g. [Wiedemann, 1986]

Question: How can we reach linear running time?

– 24 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Requirements (2)

Construction possible:

⇐ M has full row rank n

⇔ elementary operations transform
M in row echelon form

⇐ only row and column
permutations transform M in
row echelon form

⇔ 2-core of H is empty

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6

x0

x1

x2

x3

1 1 1
1 1 1

1 1 1
1 1 1

2nd4th 1st

3rd

0 1 2

3 4 5

6

Ax0Ax1 Ax2

Ax3

– 25 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Requirements (2)

Construction possible:

⇐ M has full row rank n

⇔ elementary operations transform
M in row echelon form

⇐ only row and column
permutations transform M in
row echelon form

⇔ 2-core of H is empty

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6

x0

x1

x2

x3

1 1 1
1 1 1

1 1 1
1 1 1

2nd4th 1st

3rd

0 1 2

3 4 5

6

Ax0Ax1 Ax2

Ax3

– 25 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Requirements (2)

Construction possible:

⇐ M has full row rank n

⇔ elementary operations transform
M in row echelon form

⇐ only row and column
permutations transform M in
row echelon form

⇔ 2-core of H is empty

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6

x0

x1

x2

x3

1 1 1
1 1 1

1 1 1
1 1 1

2nd4th 1st

3rd

0 1 2

3 4 5

6

Ax0Ax1 Ax2

Ax3

– 25 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Requirements (2)

Construction possible:

⇐ M has full row rank n

⇔ elementary operations transform
M in row echelon form

⇐ only row and column
permutations transform M in
row echelon form

⇔ 2-core of H is empty

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6

x0

x1

x2

x3

1 1 1
1 1 1

1 1 1
1 1 1

2nd4th 1st

3rd

0 1 2

3 4 5

6

Ax0Ax1 Ax2

Ax3

– 25 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Requirements (2)

Construction possible:

⇐ M has full row rank n

⇔ elementary operations transform
M in row echelon form

⇐ only row and column
permutations transform M in
row echelon form

⇔ 2-core of H is empty

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6

x0

x1

x2

x3

1 1 1
1 1 1

1 1 1
1 1 1

2nd4th 1st

3rd

0 1 2

3 4 5

6

Ax0Ax1 Ax2

Ax3

– 25 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Requirements (2)

Construction possible:

⇐ M has full row rank n

⇔ elementary operations transform
M in row echelon form

⇐ only row and column
permutations transform M in
row echelon form

⇔ 2-core of H is empty

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2 1 0 3 4 5 6

x2

x1

x0

x3

1 1 1
1 1 1

1 1 1

1 1 1

2nd4th 1st

3rd

0 1

2

3 4 5

6

Ax0Ax1

Ax2

Ax3

– 25 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Requirements (2)

Construction possible:

⇐ M has full row rank n

⇔ elementary operations transform
M in row echelon form

⇐ only row and column
permutations transform M in
row echelon form

⇔ 2-core of H is empty

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2 1 0 3 4 5 6

x2

x1

x0

x3

1 1 1
1 1 1

1 1 1

1 1 1

2nd4th 1st

3rd

0 1

2

3 4 5

6

Ax0Ax1

Ax2

Ax3

– 25 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Requirements (2)

Construction possible:

⇐ M has full row rank n

⇔ elementary operations transform
M in row echelon form

⇐ only row and column
permutations transform M in
row echelon form

⇔ 2-core of H is empty

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2 1 0 3 4 5 6

x2

x0

x1

x3

1 1 1
1 1 1

1 1 1

1 1 1

2nd4th 1st

3rd

0

1 2

3 4 5

6

Ax0

Ax1

Ax2

Ax3

– 25 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Requirements (2)

Construction possible:

⇐ M has full row rank n

⇔ elementary operations transform
M in row echelon form

⇐ only row and column
permutations transform M in
row echelon form

⇔ 2-core of H is empty

S [m]

6

5

4

3

2

1

0

x3

x2

x1

x0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2 1 3 0 4 5 6

x2

x0

x3

x1

1 1 1

1 1 1

11 1

1 1 1

2nd4th 1st

3rd

0 1 2

3 4 5

6

Ax0Ax1 Ax2

Ax3

– 25 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Peeling and Back-substitution

Greedy Algorithm:

I determine row and column permutations
I apply back-substitution
I running time O(n)

2nd4th 1st

3rd

0 1 2

3 4 5

6

Ax0Ax1 Ax2

Ax3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2 1 3 0 4 5 6

x2

x0

x3

x1

1 1 1

1 1 1

11 1

1 1 1

– 26 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Peeling and Back-substitution

Greedy Algorithm:
I determine row and column permutations

I apply back-substitution
I running time O(n)

2nd4th 1st

3rd

0 1 2

3 4 5

6

Ax0Ax1 Ax2

Ax3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2 1 3 0 4 5 6

x2

x0

x3

x1

1 1 1

1 1 1

11 1

1 1 1

– 26 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Peeling and Back-substitution

Greedy Algorithm:
I determine row and column permutations
I apply back-substitution

I running time O(n)

2nd4th 1st

3rd

0 1 2

3 4 5

6

Ax0Ax1 Ax2

Ax3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2 1 3 0 4 5 6

x2

x0

x3

x1

1 1 1

1 1 1

11 1

1 1 1

– 26 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Peeling and Back-substitution

Greedy Algorithm:
I determine row and column permutations
I apply back-substitution
I running time O(n)

2nd4th 1st

3rd

0 1 2

3 4 5

6

Ax0Ax1 Ax2

Ax3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2 1 3 0 4 5 6

x2

x0

x3

x1

1 1 1

1 1 1

11 1

1 1 1

– 26 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Thresholds

Appearance of 2-core [Molloy, 2004],[Cooper, 2004],[Kim, 2006],. . .

d

c0(d)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.2

0.4

0.6

0.8

– 27 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

New: Optimality
Question: Can we beat c0(3) ≈ 0.8185 using different edge sizes?

Theorem: [Rink, 2013] based on [Dietzfelbinger et al., 2010]

The analysis for the appearance of 2-cores in uniform hypergraphs can
be extended to non-uniform hypergraphs with αi ·n edges of size di > 3,
leading to thresholds c0(d,α).

Theorem: [Rink, 2013]

For two edge sizes d0 and d1 the maximum threshold

c0(d0,d1) := max
α
c0((d0,d1), (α, 1− α))

can be calculated efficiently, and for appropriate d0 and d1, this value
is larger than c0(3).

Proof idea:

* multivariate calculus, non-convex optimization

– 28 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

New: Optimality
Question: Can we beat c0(3) ≈ 0.8185 using different edge sizes?

Theorem: [Rink, 2013] based on [Dietzfelbinger et al., 2010]

The analysis for the appearance of 2-cores in uniform hypergraphs can
be extended to non-uniform hypergraphs with αi ·n edges of size di > 3,
leading to thresholds c0(d,α).

Theorem: [Rink, 2013]

For two edge sizes d0 and d1 the maximum threshold

c0(d0,d1) := max
α
c0((d0,d1), (α, 1− α))

can be calculated efficiently, and for appropriate d0 and d1, this value
is larger than c0(3).

Proof idea:

* multivariate calculus, non-convex optimization

– 28 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

New: Optimality
Question: Can we beat c0(3) ≈ 0.8185 using different edge sizes?

Theorem: [Rink, 2013] based on [Dietzfelbinger et al., 2010]

The analysis for the appearance of 2-cores in uniform hypergraphs can
be extended to non-uniform hypergraphs with αi ·n edges of size di > 3,
leading to thresholds c0(d,α).

Theorem: [Rink, 2013]

For two edge sizes d0 and d1 the maximum threshold

c0(d0,d1) := max
α
c0((d0,d1), (α, 1− α))

can be calculated efficiently, and for appropriate d0 and d1, this value
is larger than c0(3).

Proof idea:

* multivariate calculus, non-convex optimization

– 28 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

New: Optimality
Question: Can we beat c0(3) ≈ 0.8185 using different edge sizes?

Theorem: [Rink, 2013] based on [Dietzfelbinger et al., 2010]

The analysis for the appearance of 2-cores in uniform hypergraphs can
be extended to non-uniform hypergraphs with αi ·n edges of size di > 3,
leading to thresholds c0(d,α).

Theorem: [Rink, 2013]

For two edge sizes d0 and d1 the maximum threshold

c0(d0,d1) := max
α
c0((d0,d1), (α, 1− α))

can be calculated efficiently, and for appropriate d0 and d1, this value
is larger than c0(3).

Proof idea:

* multivariate calculus, non-convex optimization

– 28 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Non-convex Optimization

0.9

1

1.1

1.2

1.3

1.4

1.5

0.7 zl z<1 0.75 z1 0.8 0.85 0.9 z2 0.95 z>2 zr

1/
α

z

(i)

(ii)

(iii)

(iv)

(v)

h(z) with g(z) > 0
h(z) with g(z) < 0

* identify critical points in z-direction
* determine z ′(d0,d1), the maximum point of the function of critical

points
* find z with smallest distance to z ′ that is legal global minimum point

– 29 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Thresholds for Mixed Degrees

d1

c0(3,d1)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.2

0.4

0.6

0.8
0.92

d<5 d<5.8

– 30 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)
I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)

I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)
I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)
I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)
I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)
I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)
I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –

Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)
I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –

Thank you!

References I

Bast, H., Mehlhorn, K., Schäfer, G., and Tamaki, H. (2004).
Matching Algorithms Are Fast in Sparse Random Graphs.
In Proc. 21st STACS, volume 2996 of LNCS, pages 81–92. Springer.

Bohman, T. and Kim, J. H. (2006).
A Phase Transition for Avoiding a Giant Component.
Random Struct. Algorithms, 28(2):195–214.

Botelho, F. C., Pagh, R., and Ziviani, N. (2007).
Simple and Space-Efficient Minimal Perfect Hash Functions.
In Proc. 10th WADS, volume 4619 of LNCS, pages 139–150. Springer.

Chazelle, B., Kilian, J., Rubinfeld, R., and Tal, A. (2004).
The Bloomier Filter: An Efficient Data Structure for
Static Support Lookup Tables.
In Proc. 15th SODA, pages 30–39. SIAM.

Cooper, C. (2004).
The Cores of Random Hypergraphs with a Given Degree Sequence.
Random Struct. Algorithms, 25(4):353–375.

– 33 –

References II

Czech, Z. J., Havas, G., and Majewski, B. S. (1992).
An Optimal Algorithm for Generating Minimal Perfect Hash Functions.
Inf. Process. Lett., 43(5):257–264.

Czumaj, A. and Stemann, V. (1997).
Randomized Allocation Processes (Extended Abstract).
In Proc. 38th FOCS, pages 194–203. IEEE.

Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R.,
and Rink, M. (2009).
Tight Thresholds for Cuckoo Hashing via XORSAT.
CoRR, abs/0912.0287.

Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R.,
and Rink, M. (2010).
Tight Thresholds for Cuckoo Hashing via XORSAT.
In Proc. 37th ICALP (1), volume 6198 of LNCS, pages 213–225. Springer.

Dietzfelbinger, M. and Pagh, R. (2008).
Succinct Data Structures for Retrieval and Approximate Membership (Extended
Abstract).
In Proc. 35th ICALP (1), volume 5125 of LNCS, pages 385–396. Springer.

– 34 –

References III

Dietzfelbinger, M. and Rink, M. (2009).
Applications of a Splitting Trick.
In Proc. 36th ICALP (1), volume 5555 of LNCS, pages 354–365. Springer, 2009.

Dietzfelbinger, M. and Rink, M. (2012).
Towards Optimal Degree-Distributions for Left-Perfect Matchings in Random
Bipartite Graphs.
In Proc. 7th CSR, volume 7353 of LNCS, pages 99–111. Springer.

Drmota, M. and Kutzelnigg, R. (2012).
A Precise Analysis of Cuckoo Hashing.
ACM Transactions on Algorithms, 8(2):11:1–11:36.

Dubois, O. and Mandler, J. (2002).
The 3-XORSAT Threshold.
In Proc. 43rd FOCS, pages 769–778. IEEE Computer Society.

Erdős, P. and Rényi, A. (1960).
On the evolution of random graphs.
Publ. Math. Inst. Hung. Acad. Sci, 5:17–61.

– 35 –

References IV

Fotakis, D., Pagh, R., Sanders, P., and Spirakis, P. G. (2003).
Space Efficient Hash Tables with Worst Case Constant Access Time.
In Proc. 20th STACS, volume 2607 of LNCS, pages 271–282. Springer.

Fountoulakis, N. and Panagiotou, K. (2010).
Orientability of Random Hypergraphs and the Power of Multiple Choices.
In Proc. 37th ICALP (1), volume 6198 of LNCS, pages 348–359. Springer.

Frieze, A. M. and Melsted, P. (2009).
Maximum Matchings in Random Bipartite Graphs and the Space Utilization of
Cuckoo Hashtables.
CoRR, abs/0910.5535.

Hopcroft, J. E. and Karp, R. M. (1973).
An n5/2 Algorithm for Maximum Matchings in Bipartite Graphs.
SIAM J. Comput., 2(4):225–231.

Kim, J. H. (2006).
Poisson cloning model for random graphs.
In Proc. ICM Madrid 2006 Vol. III, pages 873–898. EMS Ph.

– 36 –

References V

Majewski, B. S., Wormald, N. C., Havas, G., and Czech, Z. J. (1996).
A Family of Perfect Hashing Methods.
Comput. J., 39(6):547–554.

Molloy, M. (2004).
The pure literal rule threshold and cores in random hypergraphs.
In Proc. 15th SODA, pages 672–681. SIAM.

Pagh, R. (2001).
On the cell probe complexity of membership and perfect hashing.
In Proc. 33rd STOC, pages 425–432. ACM.

Pagh, R. and Rodler, F. F. (2001).
Cuckoo Hashing.
In Proc. 9th ESA, volume 2161 of LNCS, pages 121–133. Springer.

Rink, M. (2013).
Mixed Hypergraphs for Linear-time Construction of Denser Hashing-based Data
Structures.
In Proceedings 39th SOFSEM. Springer.
To appear.

– 37 –

References VI

Sanders, P. (2004).
Algorithms for Scalable Storage Servers.
In Proc. 30th SOFSEM, volume 2932 of LNCS, pages 82–101. Springer.

Wiedemann, D. H. (1986).
Solving Sparse Linear Equations Over Finite Fields.
IEEE Transactions on Information Theory, 32(1):54–62.

– 38 –

	Introduction
	Preliminaries
	Dictionary and Membership
	Construction
	Maximum Load
	Algorithms
	Summary

	Retrieval and Injective Mapping
	Construction
	Algorithm
	Maximum Load
	Summary

	Appendix

