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Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Motivation

Given: set of n keys S := {x0, x1, . . . , xn−1}, S ⊆ U (finite universe)

, or
n key-value pairs f := {(x0, v0), (x1, v1), . . . , (xn−1, vn−1)}

Task: build a static data structure D, where for each x ∈ U
lookup(D, x) returns

x ∈ S x ∈ U \ S D

1 0 membership tester
ix ∈ [m] := {0, 1, . . . ,m− 1} arbitrary injective mapping
∀x ∈ S pairwise distinct

f(x) “x 6∈ S” dictionary
f(x) arbitrary retrieval DS
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Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)
I negligible space needs
I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3
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S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)
I negligible space needs
I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)
I negligible space needs
I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)
I negligible space needs
I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal

I fully random on S
(uniform, independent)

I negligible space needs
I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)

I negligible space needs
I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)
I negligible space needs

I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)
I negligible space needs
I constant evaluation time

I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Basic Scheme
Structure:

I table t with m cells, each of
capacity r bits

I d hash functions
h0,h1, . . . ,hd−1 : U→ [m]

I each x from U is mapped to set Ax
of d addresses via the hi’s
(pairwise distinct or with duplicates)

Assumption: hash functions are ideal
I fully random on S

(uniform, independent)
I negligible space needs
I constant evaluation time
I e.g. [Dietzfelbinger and Rink, 2009]
not a topic here

t

6

5

4

3

2

1

0

x3

x2

x1

S
x0 h0

h2
h1

Ax0={1,4,5}

n=4,m=7,d=3

– 3 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Abstract Representations

basic scheme
S t
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Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

Topic

Interested in:
I maximum c = n/m, c = c(d), such that construction is successful

with high probability (fixed d)
I (expected) construction time for t as function of n (fixed m and d)

Main Contributions:
I analysis for non-uniform left degrees (edge sizes, row weights)
I algorithm design

Measurements:
I time for lookup(D, x) in number of cell probes
I space complexity in bits
I time complexity in word operations
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Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

The 2-Core
0 1 2

3 4 5

6 7 8

Algorithm: Peeling
Input: hypergraph H = ([m],E)
Output: maximum induced sub-hypergraph with minimum degree 2
while H has a node v of degree 6 1 do

if v is incident to an edge Ax then delete Ax
delete v

return H

Analogous procedure in other formulations B and M gives the
(equivalent) “2-core”.
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Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping

2-core Appearance and Density

Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],. . .

Let d > 3 and n/m = c.

There is a convex “key function” key(λ) with
global minimum c0 such that with high probability the following holds:

I if c < c0 then H has an empty 2-core,
I if c > c0 then H has a non-empty 2-core.

There is a “density function” dens(λ) such that if c > c0, then the edge
density of the 2-core is tightly concentrated around dens(λ̃), where λ̃ is
the solution of c !

= key(λ).

c

λ

key(λ)

dens(λ)

λ̃

1.0

0.75

1.0

0.5 1.5 2.5

c1

c0

d=3

Interested in:
c0 and c1, the edge
density of H where the
edge density of its 2-
core is 1
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Multiple Choice Hash Table

d-ary Cuckoo Hashing [Fotakis, Pagh, Sanders, Spirakis, 2003]:

I membership tester:

. for all x from S store x in one cell of t whose
address is from Ax

. lookup(D, x) :=
[
∃a ∈ Ax : ta = x

]
I dictionary:

. analogously, store tuple (x, f(x))

I maximum one entry per cell
I cell probes: d worst-case, (d+ 1)/2 expected

S t
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Requirements

Construction possible:
def
= injective mapping σ : S→ [m],

s.t. σ(x) ∈ Ax, for all x ∈ S

⇔ left-perfect matching in B

⇔ edge orientation in H with
indegree 6 1

⇔ n× n submatrix of M >
permutation matrix

binary matrix M

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Thresholds
Theorem: [Fotakis, Pagh, Sanders, Spirakis, 2003]

Let c = n/m. If d = Θ
(
ln
( 1
1−c

))
, then with high probability (whp) B

admits a left-perfect matching.

Theorem: [Bohman and Kim, 2006, d = 4],[Frieze and Melsted, 2009],
[Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink, 2010],
[Fountoulakis and Panagiotou, 2010],

Let c = n/m and let d > 3. Then whp the following holds:

I if c < c1(d), then B admits a left-perfect matching.
I if c > c1(d), then B admits no left-perfect matching.

c1(d)

d

3 4 5 6 7 8 9 10
0.90

0.925

0.95

0.975

1.0

– 13 –
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New: Optimality
Question: Given a target average left degree d, can we improve the
success probability using different left degrees dx compared to using the
same left degree?

d =
1
n
·
∑
x∈S

dx

Theorem: [Dietzfelbinger and Rink, 2012, duplicates allowed]

Let d > 2 be the average left degree of B.
I If d is integral, then the optimal choice is dx = d for all x ∈ S.
I If d is non-integral, then it is optimal if the fraction of nodes with

degree

{
bdc
dde

is tightly concentrated around

{
dde− d
d− bdc

.

Proof idea:
* Degree of each left node is random variable Dx with separate pmf.
* Fix B, but omit 2 left nodes x,y. Compare probability for a matching

under slight changes of pmfx and pmfy.

– 14 –
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Thresholds for Mixed Degrees

Theorem: [Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink, 2010]

The results for uniform left degrees d > 3 can be extended to prove
thresholds c1(d) for mixed left degrees d > 2.

left degrees dx concentrated around d

c1(d)

d
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0.90

0.925

0.95

0.975

1.0

– 15 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Thresholds for Mixed Degrees

Theorem: [Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink, 2010]

The results for uniform left degrees d > 3 can be extended to prove
thresholds c1(d) for mixed left degrees d > 2.

left degrees dx concentrated around d

c1(d)

d

3 4 5 6 7 8 9 10
0.90

0.925

0.95

0.975

1.0

– 15 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Maximum Load Algorithms Summary

Standard Augmenting Path Algorithm

Hopcroft-Karp Algorithm [Hopcroft and Karp, 1973]:

I Results by [Bast, Mehlhorn, Schäfer, Tamaki, 2004] indicate that in our
situation the running time is O(n · logn) whp.

Question: Can we do better, in linear time?

– 16 –
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Greedy Approach
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

I adaption of “Selfless Algorithm” by [Sanders, 2004]

I running time O(n)

1

2
3

2
3

2
3

1
2
+

1
3

1
2
+

1
3

0 1 2

3 4 5

7 8

Algorithm: Generalized Selfless
Input: hypergraph H

Output: matching in B

repeat
if a node v has degree 1 then choose v

else
choose node v of minimum priority

π(v) =
∑
Ax3v

1
|Ax|

if minimum priority > 1 then return failure

choose edge Ax 3 v

with min cardinality |Ax|

match x and v
delete Ax and v

until all edges have been deleted at the end

– 17 –
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Heuristic vs Optimal Algorithm
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Summary

Performance:
I space utilization

. membership: 1/c · n · log|U|

. dictionary: 1/c · n · (log|U|+ log|V |)

I construction time: O(n)
(avg. in experiments)

I cell probes: O
(
ln
( 1
1−c

))
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Open: Proof that if B admits a matching, then whp the Generalized
Selfless Algorithm finds a matching.
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Retrieval Data Structure

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004],
Basic Retrieval Data Structure [Dietzfelbinger and Pagh, 2008]:

I Assume: (V,⊕) is an abelian group
I Given f : S→ V, build vector v = (f(xi))i∈[n]

and solve linear system

M · t = v

I lookup(D, x) :=
⊕
a∈Ax

ta

(V ,⊕)=(Z6,+)

v=(2,1,5,5)

(5+0+3) mod 6=2

S t
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Injective Mapping

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004],
Perfect Hash Function [Botelho, Pagh, Ziviani, 2007], more general [Rink, 2013]:

I given S and range m ′ of injective mapping
I build bipartite graph B ′

. left node set S, right node set [m ′]

. edges given via hash functions h ′i(x), i ∈ [d ′]

I determine matching in B ′

I build vector v of indices ι(x), where {x,h ′ι(x)}
is matching edge

I build retrieval data structure for v

S [m ′]
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2

1

0

x3
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x0

v=(0,1,1,2)
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Requirements (1)

Construction possible:

⇐ M has full row rank n, i.e. n× n submatrix with non-zero
determinant in F2
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Connections

Theorem: [Dietzfelbinger et al., 2010] based on [Dubois and Mandler, 2002]

The density threshold c = n/m up to which whp M has full row rank
is equivalent to c1, the threshold where whp the edge density of the
2-core of H grows beyond 1.

Problem: Solving a linear system is harder than determining a matching.

I general upper bound O(n3) by Gaussian elimination
I in our situation maybe O(n2), e.g. [Wiedemann, 1986]

Question: How can we reach linear running time?
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Requirements (2)

Construction possible:

⇐ M has full row rank n

⇔ elementary operations transform
M in row echelon form

⇐ only row and column
permutations transform M in
row echelon form

⇔ 2-core of H is empty
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Peeling and Back-substitution

Greedy Algorithm:

I determine row and column permutations
I apply back-substitution
I running time O(n)
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Thresholds

Appearance of 2-core [Molloy, 2004],[Cooper, 2004],[Kim, 2006],. . .

d

c0(d)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.2

0.4

0.6

0.8
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New: Optimality
Question: Can we beat c0(3) ≈ 0.8185 using different edge sizes?

Theorem: [Rink, 2013] based on [Dietzfelbinger et al., 2010]

The analysis for the appearance of 2-cores in uniform hypergraphs can
be extended to non-uniform hypergraphs with αi ·n edges of size di > 3,
leading to thresholds c0(d,α).

Theorem: [Rink, 2013]

For two edge sizes d0 and d1 the maximum threshold

c0(d0,d1) := max
α
c0((d0,d1), (α, 1− α))

can be calculated efficiently, and for appropriate d0 and d1, this value
is larger than c0(3).

Proof idea:

* multivariate calculus, non-convex optimization
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Non-convex Optimization

0.9

1

1.1

1.2

1.3

1.4

1.5

0.7 zl z<1 0.75 z1 0.8 0.85 0.9 z2 0.95 z>2 zr

1/
α

z

(i)

(ii)

(iii)

(iv)

(v)

h(z) with g(z) > 0
h(z) with g(z) < 0

* identify critical points in z-direction
* determine z ′(d0,d1), the maximum point of the function of critical

points
* find z with smallest distance to z ′ that is legal global minimum point
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Thresholds for Mixed Degrees

d1

c0(3,d1)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)
I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]
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– 31 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)

I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)
I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)
I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)
I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)
I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)
I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –



Introduction Preliminaries Dictionary and Membership Retrieval and Injective Mapping
Construction Algorithm Maximum Load Summary

Summary

Performance: e.g. using factor 1.1 >
1

c0(3, 16)
I space utilization

. retrieval DS: 1.1 · n · log|V |

. injective mapping: m ′ = m = 1.1 · n ⇒ d ′ = 3
hash functions for B ′

. 1.1 ·n · dlog 3e

. 1.1 ·n · 8/5 (simple compression)

I construction time: O(n) (expected)
I cell probes: average < 6, worst-case 16

Open: Show that c0 for mixed edge sizes can be
arbitrary close to 1.

Open: Given d, determine mix of edge sizes that
maximizes c0.

S [m ′]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

1

1

2

v=(0,1,1,2)

S t [m]

6

5

4

3

2

1

0

x3

x2

x1

x0 0

0

2

2

2

1

2

(0+2+1) mod 3=0

– 31 –



Thank you!
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