Matchings in Random Bipartite Graphs with Applications to Hashing-based Data Structures

Michael Rink

Given: set of n keys $S := \{x_0, x_1, \dots, x_{n-1}\}$, $S \subseteq U$ (finite universe)

Given: set of n keys $S := \{x_0, x_1, \dots, x_{n-1}\}$, $S \subseteq U$ (finite universe)

$\mathbf{x} \in \mathbf{S}$	$x\in U\setminus S$	\mathfrak{D}	
-----------------------------	---------------------	----------------	--

Given: set of n keys $S := \{x_0, x_1, \dots, x_{n-1}\}$, $S \subseteq U$ (finite universe)

$x \in S$	$x\in U\setminus S$	D
1	0	membership tester

Given: set of n keys $S \coloneqq \{x_0, x_1, \ldots, x_{n-1}\}, \ S \subseteq U$ (finite universe)

$\mathbf{x}\in S$	$x\in U\setminus S$	D
1	0	membership tester
$i_x \in [m] \coloneqq \{0, 1, \dots, m-1\}$	arbitrary	injective mapping
$\forall x \in S$ pairwise distinct		

Given: set of n keys $S := \{x_0, x_1, \dots, x_{n-1}\}$, $S \subseteq U$ (finite universe), or n key-value pairs $f := \{(x_0, v_0), (x_1, v_1), \dots, (x_{n-1}, v_{n-1})\}$

$\mathbf{x}\in S$	$x\in U\setminus S$	\mathfrak{D}
1	0	membership tester
$\mathfrak{i}_x \in [\mathfrak{m}] \coloneqq \{0,1,\ldots,\mathfrak{m}-1\}$	arbitrary	injective mapping
$\forall x \in S$ pairwise distinct		

Given: set of n keys $S := \{x_0, x_1, \dots, x_{n-1}\}$, $S \subseteq U$ (finite universe), or n key-value pairs $f := \{(x_0, v_0), (x_1, v_1), \dots, (x_{n-1}, v_{n-1})\}$

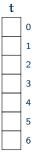
$\mathbf{x}\in S$	$x \in U \setminus S$	D
1	0	membership tester
$i_x \in [m] \coloneqq \{0, 1, \dots, m-1\}$	arbitrary	injective mapping
$\forall x \in S$ pairwise distinct		
f(x)	$``x \not\in S''$	dictionary

Given: set of n keys $S := \{x_0, x_1, \dots, x_{n-1}\}$, $S \subseteq U$ (finite universe), or n key-value pairs $f := \{(x_0, v_0), (x_1, v_1), \dots, (x_{n-1}, v_{n-1})\}$

$\mathbf{x}\in S$	$x\in U\setminus S$	D
1	0	membership tester
$i_x \in [m] \coloneqq \{0, 1, \dots, m-1\}$	arbitrary	injective mapping
$\forall x \in S \text{ pairwise distinct}$		
$f(\mathbf{x})$	$``x \not\in S''$	dictionary
f(x)	arbitrary	retrieval DS

Structure:

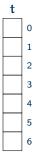
 table t with m cells, each of capacity r bits



Structure:

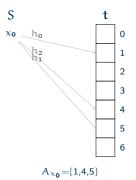
- table t with m cells, each of capacity r bits
- d hash functions

 $h_0, h_1, \ldots, h_{d-1} \colon U \to [m]$



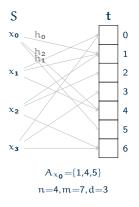
Structure:

- table t with m cells, each of capacity r bits
- ► d hash functions $h_0, h_1, \dots, h_{d-1} \colon U \to [m]$
- each x from U is mapped to set A_x of d addresses via the h_i's (*pairwise distinct* or with duplicates)



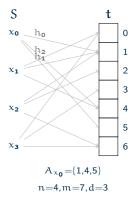
Structure:

- table t with m cells, each of capacity r bits
- ► d hash functions $h_0, h_1, \dots, h_{d-1} \colon U \to [m]$
- each x from U is mapped to set A_x of d addresses via the h_i's (*pairwise distinct* or with duplicates)



Structure:

- table t with m cells, each of capacity r bits
- ► d hash functions $h_0, h_1, \dots, h_{d-1} \colon U \to [m]$
- each x from U is mapped to set A_x of d addresses via the h_i's (*pairwise distinct* or with duplicates)

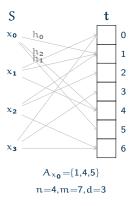


Structure:

- table t with m cells, each of capacity r bits
- ► d hash functions $h_0, h_1, \dots, h_{d-1} \colon U \to [m]$
- each x from U is mapped to set A_x of d addresses via the h_i's (*pairwise distinct* or with duplicates)

Assumption: hash functions are ideal

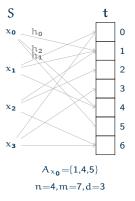
 fully random on S (uniform, independent)



Structure:

- table t with m cells, each of capacity r bits
- ► d hash functions $h_0, h_1, \dots, h_{d-1} \colon U \to [m]$
- each x from U is mapped to set A_x of d addresses via the h_i's (*pairwise distinct* or with duplicates)

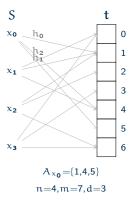
- fully random on S (uniform, independent)
- negligible space needs



Structure:

- table t with m cells, each of capacity r bits
- ► d hash functions $h_0, h_1, \dots, h_{d-1} \colon U \to [m]$
- each x from U is mapped to set A_x of d addresses via the h_i's (*pairwise distinct* or with duplicates)

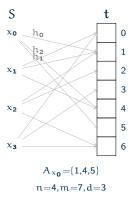
- fully random on S (uniform, independent)
- negligible space needs
- constant evaluation time

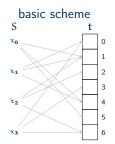


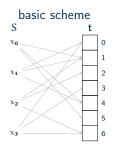
Structure:

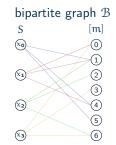
- table t with m cells, each of capacity r bits
- ► d hash functions $h_0, h_1, \dots, h_{d-1} \colon U \to [m]$
- each x from U is mapped to set A_x of d addresses via the h_i's (*pairwise distinct* or with duplicates)

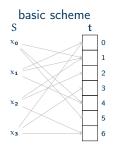
- fully random on S (uniform, independent)
- negligible space needs
- constant evaluation time
- e.g. [Dietzfelbinger and Rink, 2009] not a topic here

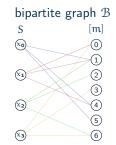


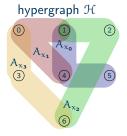


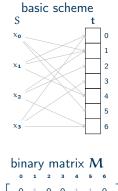


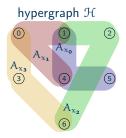


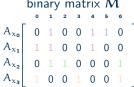












Topic

Interested in:

- maximum c = n/m, c = c(d), such that construction is successful with high probability (fixed d)
- (expected) construction time for t as function of n (fixed m and d)

Topic

Interested in:

- ► maximum c = n/m, c = c(d), such that construction is successful with high probability (fixed d)
- (expected) construction time for t as function of n (fixed m and d)

Main Contributions:

- ► analysis for non-uniform left degrees (edge sizes, row weights)
- algorithm design

Topic

Interested in:

- ► maximum c = n/m, c = c(d), such that construction is successful with high probability (fixed d)
- (expected) construction time for t as function of n (fixed m and d)

Main Contributions:

- ► analysis for non-uniform left degrees (edge sizes, row weights)
- algorithm design

Measurements:

- time for $lookup(\mathfrak{D}, x)$ in number of cell probes
- space complexity in bits
- time complexity in word operations

Outline

Preliminaries

Dictionary and Membership

Retrieval and Injective Mapping

Next ...

Preliminaries

Dictionary and Membership

Retrieval and Injective Mapping

Input: hypergraph $\mathcal{H} = ([m], E)$

Output: maximum induced sub-hypergraph with minimum degree 2 while \mathcal{H} has a node v of degree ≤ 1 do

if ν is incident to an edge A_{χ} then delete A_{χ}

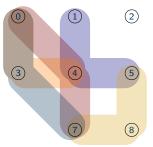
 $_$ delete v

Input: hypergraph $\mathcal{H} = ([m], E)$

Output: maximum induced sub-hypergraph with minimum degree 2 while \mathcal{H} has a node v of degree ≤ 1 do

if ν is incident to an edge A_{χ} then delete A_{χ}

 $_$ delete v



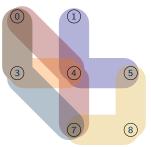
Input: hypergraph $\mathcal{H} = ([m], E)$

Preliminaries

Output: maximum induced sub-hypergraph with minimum degree 2 while \mathcal{H} has a node v of degree ≤ 1 do

if ν is incident to an edge A_{χ} then delete A_{χ}

 $_$ delete v

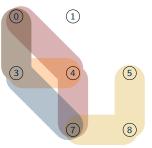


Input: hypergraph $\mathcal{H} = ([m], E)$

Output: maximum induced sub-hypergraph with minimum degree 2 while \mathcal{H} has a node v of degree ≤ 1 do

if ν is incident to an edge A_{χ} then delete A_{χ}

 $_$ delete v

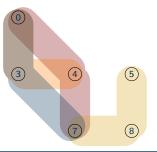


Input: hypergraph $\mathcal{H} = ([m], E)$

Output: maximum induced sub-hypergraph with minimum degree 2 while \mathcal{H} has a node v of degree ≤ 1 do

if ν is incident to an edge A_{χ} then delete A_{χ}

 $_$ delete v



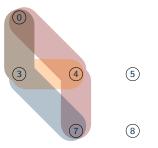
Algorithm: Peeling

Input: hypergraph $\mathcal{H} = ([m], E)$

Output: maximum induced sub-hypergraph with minimum degree 2 while \mathcal{H} has a node v of degree ≤ 1 do

if ν is incident to an edge A_{χ} then delete A_{χ}

 $_$ delete v



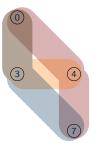
Algorithm: Peeling

Input: hypergraph $\mathcal{H} = ([m], E)$

Output: maximum induced sub-hypergraph with minimum degree 2 while \mathcal{H} has a node v of degree ≤ 1 do

if ν is incident to an edge A_{χ} then delete A_{χ}

 $_$ delete v

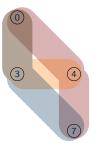


Algorithm: Peeling

Input: hypergraph $\mathcal{H} = ([m], E)$

Output: maximum induced sub-hypergraph with minimum degree 2 while \mathcal{H} has a node v of degree ≤ 1 do if v is incident to an edge A_x then delete A_x

 $_$ delete v



Algorithm: Peeling

Input: hypergraph $\mathcal{H} = ([m], E)$

Output: maximum induced sub-hypergraph with minimum degree 2 while ${\mathfrak H}$ has a node ν of degree $\leqslant 1$ do

```
if \nu is incident to an edge A_{\chi} then delete A_{\chi}
```

 $_$ delete v

return \mathcal{H}

Analogous procedure in other formulations ${\mathcal B}$ and M gives the (equivalent) "2-core".

2-core Appearance and Density

Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],...

Let $d \ge 3$ and n/m = c.

Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],...

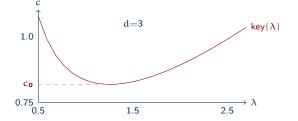
Let $d \ge 3$ and n/m = c. There is a convex "key function" key (λ) with global minimum c_0 such that with high probability the following holds:



Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],...

Let $d \geqslant 3$ and n/m=c. There is a convex "key function" $\text{key}(\lambda)$ with global minimum c_0 such that with high probability the following holds:

- if $c < c_0$ then ${\mathcal H}$ has an empty 2-core,
- \blacktriangleright if $c>c_0$ then ${\mathcal H}$ has a non-empty 2-core.

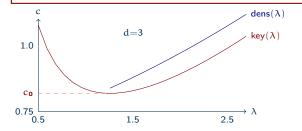


Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],...

Let $d \geqslant 3$ and n/m=c. There is a convex "key function" $\text{key}(\lambda)$ with global minimum c_0 such that with high probability the following holds:

- \blacktriangleright if $c < c_0$ then ${\mathcal H}$ has an empty 2-core,
- \blacktriangleright if $c>c_0$ then ${\mathcal H}$ has a non-empty 2-core.

There is a "density function" dens(λ) such that if $c > c_0$

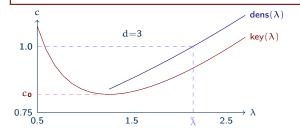


Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],...

Let $d \geqslant 3$ and n/m=c. There is a convex "key function" $\text{key}(\lambda)$ with global minimum c_0 such that with high probability the following holds:

- \blacktriangleright if $c < c_0$ then ${\mathcal H}$ has an empty 2-core,
- \blacktriangleright if $c>c_0$ then ${\mathcal H}$ has a non-empty 2-core.

There is a "density function" dens(λ) such that if $c > c_0$, then the edge density of the 2-core is tightly concentrated around dens($\tilde{\lambda}$)

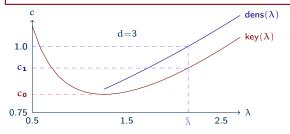


Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],...

Let $d \ge 3$ and n/m = c. There is a convex "key function" key (λ) with global minimum c_0 such that with high probability the following holds:

- \blacktriangleright if $c < c_0$ then ${\mathcal H}$ has an empty 2-core,
- \blacktriangleright if $c>c_0$ then ${\mathcal H}$ has a non-empty 2-core.

There is a "density function" dens(λ) such that if $c > c_0$, then the edge density of the 2-core is tightly concentrated around dens($\tilde{\lambda}$), where $\tilde{\lambda}$ is the solution of $c \stackrel{!}{=} \text{key}(\lambda)$.

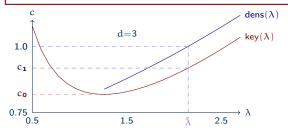


Theorem: [Molloy, 2004],[Cooper, 2004],[Kim, 2006],...

Let $d \ge 3$ and n/m = c. There is a convex "key function" key(λ) with global minimum c_0 such that with high probability the following holds:

- \blacktriangleright if $c < c_0$ then ${\mathcal H}$ has an empty 2-core,
- \blacktriangleright if $c>c_0$ then ${\mathcal H}$ has a non-empty 2-core.

There is a "density function" dens(λ) such that if $c > c_0$, then the edge density of the 2-core is tightly concentrated around dens($\tilde{\lambda}$), where $\tilde{\lambda}$ is the solution of $c \stackrel{!}{=} \text{key}(\lambda)$.



Interested in:

 c_0 and c_1 , the edge density of $\mathcal H$ where the edge density of its 2core is 1

Next ...

Preliminaries

Dictionary and Membership

Construction Maximum Load Algorithms Summary

Retrieval and Injective Mapping Construction Algorithm Maximum Load Summary

Preliminaries

Maximum Load

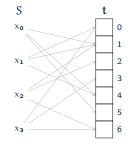
Dictionary and Membership

Retrieval and Injective Mapping

Summary

Algorithms

Multiple Choice Hash Table



Preliminaries

Dictionary and Membership

Algorithms

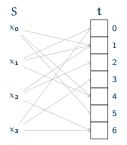
Retrieval and Injective Mapping

Summary

Multiple Choice Hash Table

d-ary Cuckoo Hashing [Fotakis, Pagh, Sanders, Spirakis, 2003]:

- membership tester:
 - $\triangleright~$ for all x from S store x in one cell of t whose address is from A_x



Preliminaries

Dictionary and Membership

Algorithms

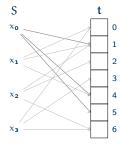
Retrieval and Injective Mapping

Summary

Multiple Choice Hash Table

d-ary Cuckoo Hashing [Fotakis, Pagh, Sanders, Spirakis, 2003]:

- membership tester:
 - $\triangleright~$ for all x from S store x in one cell of t whose address is from A_x



Preliminaries

Dictionary and Membership

Algorithms

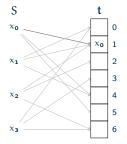
Retrieval and Injective Mapping

Summary

Multiple Choice Hash Table

d-ary Cuckoo Hashing [Fotakis, Pagh, Sanders, Spirakis, 2003]:

- membership tester:
 - $\triangleright~$ for all x from S store x in one cell of t whose address is from A_x



Preliminaries

Dictionary and Membership

Algorithms

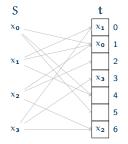
Retrieval and Injective Mapping

Summary

Multiple Choice Hash Table

d-ary Cuckoo Hashing [Fotakis, Pagh, Sanders, Spirakis, 2003]:

- membership tester:
 - $\triangleright~$ for all x from S store x in one cell of t whose address is from A_x



Preliminaries

Maximum Load

Dictionary and Membership

Algorithms

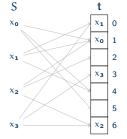
Retrieval and Injective Mapping

Summary

Multiple Choice Hash Table

- membership tester:

$${}^{\triangleright} \text{ lookup}(\mathfrak{D},x)\coloneqq \left[\exists a\in A_{x}\colon t_{a}=x\right]$$



Preliminaries

Maximum Load

Dictionary and Membership

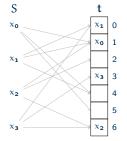
Algorithms

Retrieval and Injective Mapping

Summary

Multiple Choice Hash Table

- membership tester:
 - $\,\triangleright\,$ for all x from S store x in one cell of t whose address is from A_x
 - ${}^{\scriptscriptstyle \triangleright} \text{ lookup}(\mathfrak{D},x)\coloneqq \left[\exists a\in A_x\colon t_a=x\right]$
- dictionary:
 - $\,\triangleright\,$ analogously, store tuple (x,f(x))



Preliminaries

Maximum Load

Dictionary and Membership

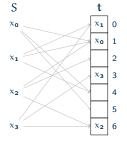
Algorithms

Retrieval and Injective Mapping

Summary

Multiple Choice Hash Table

- membership tester:
 - $\,\triangleright\,$ for all x from S store x in one cell of t whose address is from A_x
 - ${}^{\scriptscriptstyle \triangleright} \text{ lookup}(\mathfrak{D},x)\coloneqq \left[\exists a\in A_x\colon t_a=x\right]$
- dictionary:
 - $\,\triangleright\,$ analogously, store tuple (x,f(x))
- maximum one entry per cell



Preliminaries

Maximum Load

Dictionary and Membership

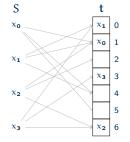
Algorithms

Retrieval and Injective Mapping

Summary

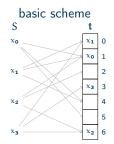
Multiple Choice Hash Table

- membership tester:
 - $\,\triangleright\,$ for all x from S store x in one cell of t whose address is from A_x
 - ${}^{\scriptscriptstyle \triangleright} \text{ lookup}(\mathfrak{D}, x) \coloneqq \left[\exists a \in A_x \colon t_a = x \right]$
- dictionary:
 - $\,\triangleright\,$ analogously, store tuple (x,f(x))
- maximum one entry per cell
- cell probes: d worst-case, (d+1)/2 expected



Construction possible:

 $\stackrel{\text{def}}{=} \begin{array}{l} \text{injective mapping } \sigma \colon S \to [m],\\ \text{s.t. } \sigma(x) \in A_x, \text{ for all } x \in S \end{array}$

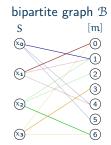


Requirements

Construction possible:

Construction

- $\stackrel{\text{def}}{=} \begin{array}{l} \text{injective mapping } \sigma \colon S \to [m],\\ \text{s.t. } \sigma(x) \in A_x, \text{ for all } x \in S \end{array}$
- $\Leftrightarrow \text{ left-perfect matching in } \mathcal{B}$



Retrieval and Injective Mapping

Summary

liminaries

Dictionary and Membership

Construction

Maximum Load

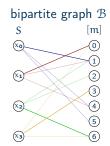
Algorithms

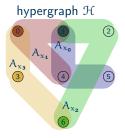
,-----

Requirements

Construction possible:

- $\Leftrightarrow \text{ left-perfect matching in } \mathcal{B}$
- $\Leftrightarrow \mbox{ edge orientation in } \mathcal{H} \mbox{ with } \\ \mbox{ indegree } \leqslant 1 \\$





Preliminaries

Dictionary and Membership

Construction

Maximum Load

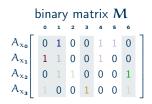
Algorithms

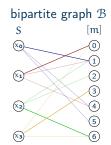
Summary

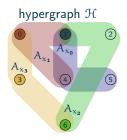
Requirements

Construction possible:

- $\Leftrightarrow \text{ left-perfect matching in } \mathcal{B}$
- $\Leftrightarrow \mbox{ edge orientation in } \mathcal{H} \mbox{ with } \\ \mbox{ indegree } \leqslant 1 \\$
- $\Leftrightarrow n \times n \text{ submatrix of } M \geqslant$ permutation matrix







Let c=n/m. If $d=\Theta\left(ln\left(\frac{1}{1-c}\right)\right)$, then with high probability (whp) ${\mathcal B}$ admits a left-perfect matching.

	Preliminaries	Preliminaries Dictionary and Membership				
Construction	Maximum Load	Algorithms	Summary			
Thresholds						
Theore	em: [Fotakis, Pagh, Sande	ers, Spirakis, 2003]				

Let c=n/m. If $d=\Theta\left(ln\left(\frac{1}{1-c}\right)\right)$, then with high probability (whp) ${\mathcal B}$ admits a left-perfect matching.

Theorem: [Bohman and Kim, 2006, d = 4],[Frieze and Melsted, 2009], [Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink, 2010], [Fountoulakis and Panagiotou, 2010],

Let c = n/m and let $d \ge 3$. Then whp the following holds:

	Preliminaries Dictionary and Membership					
Construction	Maximum Load	Algorithms	Summary			
Thresholds						

Theorem: [Fotakis, Pagh, Sanders, Spirakis, 2003] Let c = n/m. If $d = \Theta\left(\ln\left(\frac{1}{1-c}\right)\right)$, then with high probability (whp) \mathcal{B} admits a left-perfect matching.

Theorem: [Bohman and Kim, 2006, d = 4],[Frieze and Melsted, 2009], [Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink, 2010], [Fountoulakis and Panagiotou, 2010],

Let c = n/m and let $d \ge 3$. Then whp the following holds:

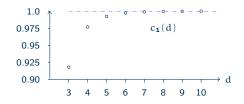
- ▶ if $c < c_1(d)$, then \mathcal{B} admits a left-perfect matching.
- if $c > c_1(d)$, then \mathcal{B} admits no left-perfect matching.

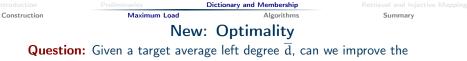
Let c = n/m. If $d = \Theta\left(\ln\left(\frac{1}{1-c}\right)\right)$, then with high probability (whp) \mathcal{B} admits a left-perfect matching.

Theorem: [Bohman and Kim, 2006, d = 4],[Frieze and Melsted, 2009], [Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink, 2010], [Fountoulakis and Panagiotou, 2010],

Let c = n/m and let $d \ge 3$. Then whp the following holds:

- ▶ if $c < c_1(d)$, then \mathcal{B} admits a left-perfect matching.
- ▶ if $c > c_1(d)$, then \mathcal{B} admits no left-perfect matching.





success probability using different left degrees d_x compared to using the same left degree?

 Introduction Construction
 Preliminaries
 Dictionary and Membership Maximum Load
 Retrieval and Injective Mapping Summary

 New:
 Optimality

 Question:
 Given a target average left degree d, can we improve the

success probability using different left degrees d_x compared to using the same left degree?

$$\overline{d} = \frac{1}{n} \cdot \sum_{x \in S} d_x$$

success probability using different left degrees d_x compared to using the same left degree?

 $\overline{d} = \frac{1}{n} \cdot \sum_{x \in S} d_x$

Theorem: [Dietzfelbinger and Rink, 2012, duplicates allowed]

Let $\overline{d} > 2$ be the average left degree of \mathcal{B} .

- If \overline{d} is integral, then the optimal choice is $d_x = \overline{d}$ for all $x \in S$.
- ► If \overline{d} is non-integral, then it is optimal if the fraction of nodes with degree $\begin{cases} \lfloor \overline{d} \rfloor \\ \lceil \overline{d} \rceil \end{cases}$ is tightly concentrated around $\begin{cases} \lceil \overline{d} \rceil \overline{d} \\ \overline{d} \lceil \overline{d} \rceil \end{cases}$.

success probability using different left degrees d_x compared to using the same left degree?

 $\overline{d} = \frac{1}{n} \cdot \sum_{x \in S} d_x$

Theorem: [Dietzfelbinger and Rink, 2012, duplicates allowed]

Let $\overline{d} > 2$ be the average left degree of \mathcal{B} .

- If \overline{d} is integral, then the optimal choice is $d_x = \overline{d}$ for all $x \in S$.
- ▶ If \overline{d} is non-integral, then it is optimal if the fraction of nodes with degree $\begin{cases} \lfloor \overline{d} \rfloor \\ \lceil \overline{d} \rceil \end{cases}$ is tightly concentrated around $\begin{cases} \lceil \overline{d} \rceil \overline{d} \\ \overline{d} \lceil \overline{d} \rceil \end{cases}$.

Proof idea:

- * Degree of each left node is random variable D_x with separate pmf.
- * Fix \mathcal{B} , but omit 2 left nodes x, y. Compare probability for a matching under slight changes of pmf_x and pmf_u .

eliminaries

Dictionary and Membership

Maximum Load

Algorithms

Summary

Thresholds for Mixed Degrees

Theorem: [Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink, 2010] The results for uniform left degrees $d \ge 3$ can be extended to prove thresholds $c_1(\overline{d})$ for mixed left degrees $\overline{d} > 2$.

aries

Dictionary and Membership

Retrieval and Injective Mapping

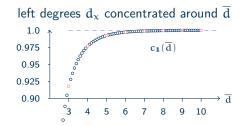
Maximum Load

Algorithms

Summary

Thresholds for Mixed Degrees

Theorem: [Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink, 2010] The results for uniform left degrees $d \ge 3$ can be extended to prove thresholds $c_1(\overline{d})$ for mixed left degrees $\overline{d} > 2$.



Introduction

Dictionary and Membership

Retrieval and Injective Mapping

Construction

Maximum Load

Algorithms

Summary

Standard Augmenting Path Algorithm

Hopcroft-Karp Algorithm [Hopcroft and Karp, 1973]:

Hopcroft-Karp Algorithm [Hopcroft and Karp, 1973]:

► Results by [Bast, Mehlhorn, Schäfer, Tamaki, 2004] indicate that in our situation the running time is O(n · log n) whp.

Hopcroft-Karp Algorithm [Hopcroft and Karp, 1973]:

► Results by [Bast, Mehlhorn, Schäfer, Tamaki, 2004] indicate that in our situation the running time is O(n · log n) whp.

Question: Can we do better, in linear time?

Construction

Maximum Load

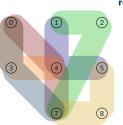
Algorithms

Summary

Greedy Approach

Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

► adaption of "Selfless Algorithm" by [Sanders, 2004]



Algorithm: Generalized Selfless

Input: hypergraph \mathcal{H} Output: matching in \mathcal{B} repeat

if a node ν has degree 1 then choose ν

 $\begin{array}{c} \mbox{choose edge } A_x \ni \nu \\ \mbox{match } x \mbox{ and } \nu \\ \mbox{delete } A_x \mbox{ and } \nu \\ \mbox{until all edges have been deleted at the end} \end{array}$

Construction

Maximum Load

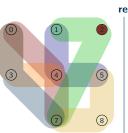
Algorithms

Summary

Greedy Approach

Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

► adaption of "Selfless Algorithm" by [Sanders, 2004]



Algorithm: Generalized Selfless

Input: hypergraph \mathcal{H} Output: matching in \mathcal{B} repeat

if a node ν has degree 1 then choose ν

 $\begin{array}{c} \mbox{choose edge } A_x \ni \nu \\ \mbox{match } x \mbox{ and } \nu \\ \mbox{delete } A_x \mbox{ and } \nu \\ \mbox{until all edges have been deleted at the end} \end{array}$

Dictionary and Membership

Retrieval and Injective Mapping

Construction

Maximum Load

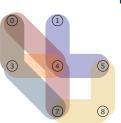
Algorithms

Summary

Greedy Approach

Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

► adaption of "Selfless Algorithm" by [Sanders, 2004]



Algorithm: Generalized Selfless

Input: hypergraph H Output: matching in B repeat

if a node v has degree 1 then choose v

 $\begin{array}{c} \mbox{choose edge } A_x \ni \nu \\ \mbox{match } x \mbox{ and } \nu \\ \mbox{delete } A_x \mbox{ and } \nu \\ \mbox{until all edges have been deleted at the end} \end{array}$

Retrieval and Injective Mapping

Construction

Maximum Load

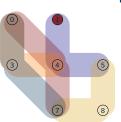
Algorithms

Summary

Greedy Approach

Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

► adaption of "Selfless Algorithm" by [Sanders, 2004]



Algorithm: Generalized Selfless

Input: hypergraph H Output: matching in B repeat

if a node v has degree 1 then choose v

Retrieval and Injective Mapping

Construction

Maximum Load

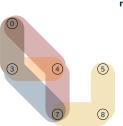
Algorithms

Summary

Greedy Approach

Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

► adaption of "Selfless Algorithm" by [Sanders, 2004]



Algorithm: Generalized Selfless

Input: hypergraph \mathcal{H} Output: matching in \mathcal{B} repeat

if a node v has degree 1 then choose v

Retrieval and Injective Mapping

Construction

Maximum Load

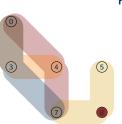
Algorithms

Summary

Greedy Approach

Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

► adaption of "Selfless Algorithm" by [Sanders, 2004]



Algorithm: Generalized Selfless

Input: hypergraph H Output: matching in B repeat

if a node v has degree 1 then choose v

Construction

Maximum Load

(5)

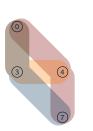
Algorithms

Summary

Greedy Approach

Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

► adaption of "Selfless Algorithm" by [Sanders, 2004]



Algorithm: Generalized Selfless Input: hypergraph H

Output: matching in B repeat

if a node v has degree 1 then choose v

Construction

Maximum Load

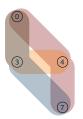
Algorithms

Summary

Greedy Approach

Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

► adaption of "Selfless Algorithm" by [Sanders, 2004]



5

Algorithm: Generalized Selfless **Input**: hypergraph H **Output**: matching in \mathcal{B} repeat if a node v has degree 1 then choose velse choose node ν of minimum priority $\pi(\nu) = \sum_{\lambda = \supset \nu} \frac{1}{|A_{\chi}|}$ choose edge $A_x \ni v$ match x and v

until all edges have been deleted at the end

- 17 -

delete A_x and v

Retrieval and Injective Mapping

Construction

Maximum Load

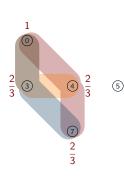
Algorithms

Summary

Greedy Approach

Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

► adaption of "Selfless Algorithm" by [Sanders, 2004]



Algorithm: Generalized Selfless **Input**: hypergraph H **Output**: matching in \mathcal{B} repeat if a node v has degree 1 then choose velse choose node ν of minimum priority $\pi(\nu) = \sum_{A_x \ni \nu} \frac{1}{|A_x|}$ choose edge $A_x \ni v$ match x and vdelete A_x and vuntil all edges have been deleted at the end

Retrieval and Injective Mapping

Construction

Maximum Load

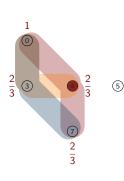
Algorithms

Summary

Greedy Approach

Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

► adaption of "Selfless Algorithm" by [Sanders, 2004]



 Algorithm: Generalized Selfless

 Input: hypergraph \mathcal{H}

 Output: matching in \mathcal{B}

 repeat

 if a node v has degree 1 then choose v

 else

 choose node v of minimum priority

 $\pi(v) = \sum_{A_x \ni v} \frac{1}{|A_x|}$

choose edge $A_x \ni v$ with min cardinality $|A_x|$ match x and v delete A_x and v until all edges have been deleted at the end

Summary

Construction

Maximum Load

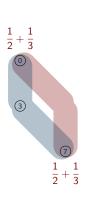
(5)

Algorithms

Greedy Approach

Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

► adaption of "Selfless Algorithm" by [Sanders, 2004]



Algorithm: Generalized Selfless **Input**: hypergraph H **Output**: matching in \mathcal{B} repeat if a node v has degree 1 then choose velse choose node ν of minimum priority $\pi(\nu) = \sum_{\lambda = \supset \nu} \frac{1}{|A_{\chi}|}$ choose edge $A_x \ni v$ with min cardinality $|A_x|$ match x and vdelete A_x and vuntil all edges have been deleted at the end

Retrieval and Injective Mapping

Summary

Construction

Maximum Load

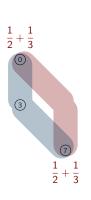
(5)

Algorithms

Greedy Approach

Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

► adaption of "Selfless Algorithm" by [Sanders, 2004]



Algorithm: Generalized Selfless **Input**: hypergraph H **Output**: matching in \mathcal{B} repeat if a node v has degree 1 then choose velse choose node ν of minimum priority $\pi(\nu) = \sum_{A_x \ni \nu} \frac{1}{|A_x|}$ if minimum priority > 1 then return failure choose edge $A_x \ni v$ with min cardinality $|A_x|$ match x and vdelete A_x and vuntil all edges have been deleted at the end

Construction

Maximum Load

(5)

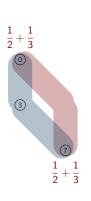
Algorithms

Summary

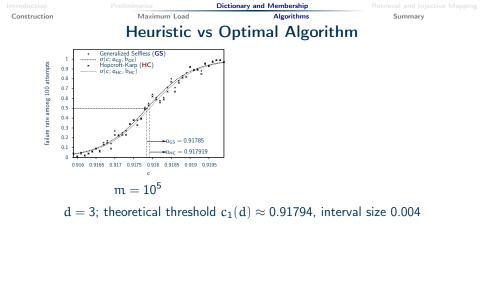
Greedy Approach

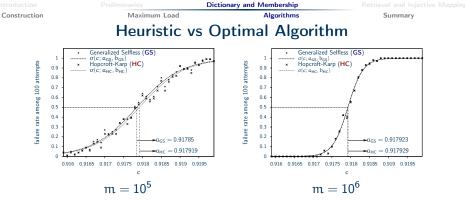
Generalized Selfless Algorithm [Dietzfelbinger et al., 2010]:

- ► adaption of "Selfless Algorithm" by [Sanders, 2004]
- ► running time O(n)

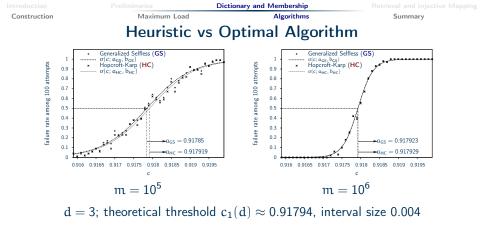


Algorithm: Generalized Selfless **Input**: hypergraph H **Output**: matching in \mathcal{B} repeat if a node v has degree 1 then choose velse choose node ν of minimum priority $\pi(\nu) = \sum_{A_x \ni \nu} \frac{1}{|A_x|}$ if minimum priority > 1 then return failure choose edge $A_x \ni v$ with min cardinality $|A_x|$ match x and vdelete A_{x} and vuntil all edges have been deleted at the end



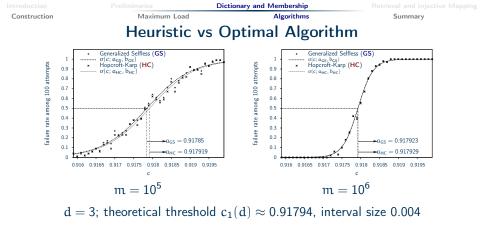


d = 3; theoretical threshold $c_1(d) \approx 0.91794$, interval size 0.004



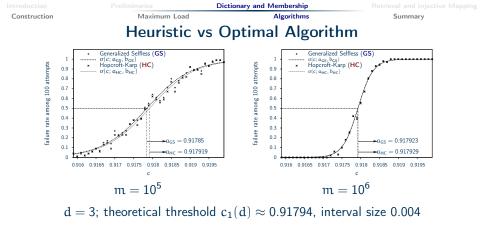
Running times for **GS** and **HC** in seconds on Intel Xeon 3GHz:

	m\c	0.916	0.917	0.918	0.919
--	-----	-------	-------	-------	-------



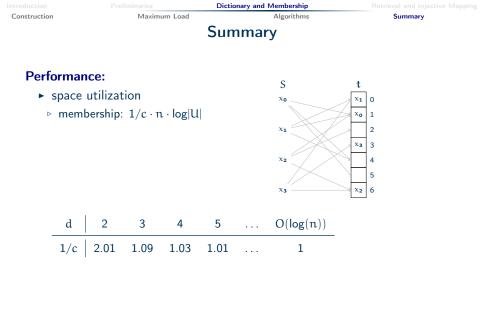
Running times for **GS** and **HC** in seconds on Intel Xeon 3GHz:

m\c	0.916	0.917	0.918	0.919
10 ⁵	0.11 0.64	0.11 0.77	0.11 0.88	0.11 0.93



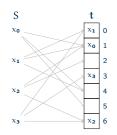
Running times for **GS** and **HC** in seconds on Intel Xeon 3GHz:

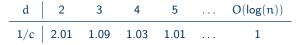
m\c	0.916	0.917	0.918	0.919
-			0.11 0.88 1.76 16.36	



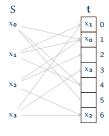
Performance:

- space utilization
 - \triangleright membership: $1/c \cdot n \cdot \log|U|$
- construction time: O(n) (avg. in experiments)

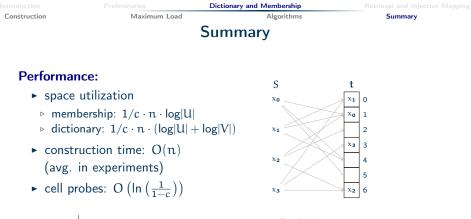


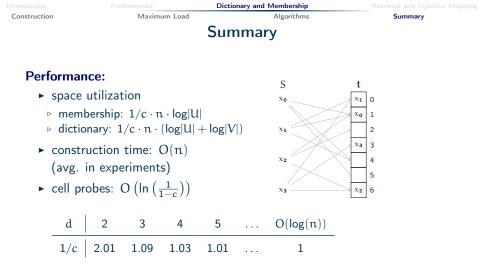


- space utilization
 - \triangleright membership: $1/c \cdot n \cdot \log|U|$
- construction time: O(n) (avg. in experiments)
- cell probes: $O\left(ln\left(\frac{1}{1-c}\right)\right)$



d	2	3	4	5	 $O(log(\mathfrak{n}))$
1/c	2.01	1.09	1.03	1.01	 1





Open: Proof that if \mathcal{B} admits a matching, then whp the Generalized Selfless Algorithm finds a matching.

Next ...

Preliminaries

Dictionary and Membership

Construction Maximum Load Algorithms

Retrieval and Injective Mapping

Construction Algorithm Maximum Load Summary

Retrieval and Injective Mapping

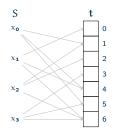
Summary

Algorithm

Maximum Load

Retrieval Data Structure

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004], Basic Retrieval Data Structure [Dietzfelbinger and Pagh, 2008]:



Maximum Load

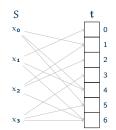
Summary

Retrieval Data Structure

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004], Basic Retrieval Data Structure [Dietzfelbinger and Pagh, 2008]:

• Assume: (V, \oplus) is an abelian group

 $(V,\oplus) = (\mathbb{Z}_6,+)$



Construction

Algorithm

Maximum Load

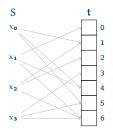
Summary

Retrieval Data Structure

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004], Basic Retrieval Data Structure [Dietzfelbinger and Pagh, 2008]:

- Assume: (V, \oplus) is an abelian group
- Given $f: S \to V$, build vector $\mathbf{v} = (f(x_i))_{i \in [n]}$

 $(V,\oplus)=(\mathbb{Z}_6,+)$ v=(2,1,5,5)



Construction

Algorithm

Maximum Load

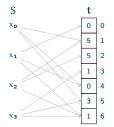
Summary

Retrieval Data Structure

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004], Basic Retrieval Data Structure [Dietzfelbinger and Pagh, 2008]:

- \blacktriangleright Assume: (V,\oplus) is an abelian group
- ▶ Given $f: S \to V$, build vector $v = (f(x_i))_{i \in [n]}$ and solve linear system

 $(V,\oplus) = (\mathbb{Z}_6,+)$ v = (2,1,5,5)



Construction

Algorithm

Maximum Load

Summary

Retrieval Data Structure

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004], Basic Retrieval Data Structure [Dietzfelbinger and Pagh, 2008]:

- Assume: (V, \oplus) is an abelian group
- ▶ Given f: S → V, build vector $v = (f(x_i))_{i \in [n]}$ and solve linear system

$$(V,\oplus) = (\mathbb{Z}_6,+)$$

 $v = (2,1,5,5)$
 $(5+0+3) \mod 6=2$

 $\begin{array}{c} S & t \\ x_0 & 0 \\ x_1 & 5 \\ x_2 & 0 \\ x_2 & 0 \\ x_3 & 1 \\ \end{array}$

$$\mathbf{M} \cdot \mathbf{t} = \mathbf{v}$$

• lookup(
$$\mathfrak{D}, x$$
) := $\bigoplus_{a \in A_x} t_a$

Retrieval and Injective Mapping

Summary

Algorithm

Maximum Load

Injective Mapping

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004], Perfect Hash Function [Botelho, Pagh, Ziviani, 2007], more general [Rink, 2013]:

Maximum Load

Injective Mapping

Summary

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004], Perfect Hash Function [Botelho, Pagh, Ziviani, 2007], more general [Rink, 2013]:

 \blacktriangleright given S and range m' of injective mapping

Dictionary and Membershi

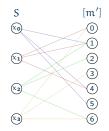
Summary

Maximum Load

Injective Mapping

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004], Perfect Hash Function [Botelho, Pagh, Ziviani, 2007], more general [Rink, 2013]:

- \blacktriangleright given S and range m' of injective mapping
- build bipartite graph \mathcal{B}'
 - $\,\triangleright\,$ left node set S, right node set [m']
 - $\,\triangleright\,$ edges given via hash functions $h_{\mathfrak{i}}'(x),\,\mathfrak{i}\in[d']$



Dictionary and Membershi

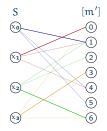
Summary

Maximum Load

Injective Mapping

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004], Perfect Hash Function [Botelho, Pagh, Ziviani, 2007], more general [Rink, 2013]:

- \blacktriangleright given S and range m' of injective mapping
- build bipartite graph \mathcal{B}'
 - $\,\triangleright\,$ left node set S, right node set [m']
 - $\,\triangleright\,$ edges given via hash functions $h_{\mathfrak{i}}'(x),\,\mathfrak{i}\in[d']$
- \blacktriangleright determine matching in \mathcal{B}'



Dictionary and Membershi

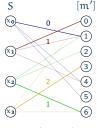
Summary

Maximum Load

Injective Mapping

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004], Perfect Hash Function [Botelho, Pagh, Ziviani, 2007], more general [Rink, 2013]:

- \blacktriangleright given S and range m' of injective mapping
- build bipartite graph \mathcal{B}'
 - $\,\triangleright\,$ left node set S, right node set [m']
 - $\,\triangleright\,$ edges given via hash functions $h_i'(x),\,i\in [d']$
- determine matching in \mathcal{B}'
- build vector ν of indices ι(x), where {x, h'_{ι(x)}} is matching edge



v = (0, 1, 1, 2)

Dictionary and Membershi

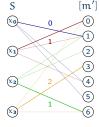
Summary

Maximum Load

Injective Mapping

Bloomier Filter [Chazelle, Kilian, Rubinfeld, Tal, 2004], Perfect Hash Function [Botelho, Pagh, Ziviani, 2007], more general [Rink, 2013]:

- \blacktriangleright given S and range m' of injective mapping
- build bipartite graph \mathcal{B}'
 - $\,\triangleright\,$ left node set S, right node set [m']
 - $\,\triangleright\,$ edges given via hash functions $h_i'(x),\,i\in [d']$
- determine matching in \mathcal{B}'
- build vector ν of indices ι(x), where {x, h'_{ι(x)}} is matching edge
- build retrieval data structure for v



v = (0, 1, 1, 2)

Retrieval and Injective Mapping

Algorithm

Maximum Load

Requirements (1)

Summary

Construction possible:

 $\ \Leftarrow \ M$ has full row rank n, i.e. $n\times n$ submatrix with non-zero determinant in \mathbb{F}_2

Summary

Algorithm

Maximum Load

Connections

Theorem: [Dietzfelbinger et al., 2010] based on [Dubois and Mandler, 2002] The density threshold c = n/m up to which whp M has full row rank is equivalent to c_1 , the threshold where whp the edge density of the 2-core of \mathcal{H} grows beyond 1.

Maximum Load

Connections

Summary

Theorem: [Dietzfelbinger et al., 2010] based on [Dubois and Mandler, 2002] The density threshold c = n/m up to which whp M has full row rank is equivalent to c_1 , the threshold where whp the edge density of the 2-core of \mathcal{H} grows beyond 1.

Problem: Solving a linear system is harder than determining a matching.

- general upper bound $O(n^3)$ by Gaussian elimination
- ▶ in our situation maybe $O(n^2)$, e.g. [Wiedemann, 1986]

Maximum Load

Summary

Connections

Theorem: [Dietzfelbinger et al., 2010] based on [Dubois and Mandler, 2002] The density threshold c=n/m up to which whp M has full row rank is equivalent to c_1 , the threshold where whp the edge density of the 2-core of ${\mathcal H}$ grows beyond 1.

Problem: Solving a linear system is harder than determining a matching.

- general upper bound $O(n^3)$ by Gaussian elimination
- ▶ in our situation maybe $O(n^2)$, e.g. [Wiedemann, 1986]

Question: How can we reach linear running time?

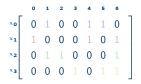
Maximum Load

Summary

Requirements (2)

Construction possible:

 $\ \Leftarrow \ M \text{ has full row rank } n$

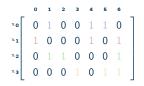


Maximum Load

Summary

Requirements (2)

- $\ \Leftarrow \ M \text{ has full row rank } n$
- $\Leftrightarrow \text{ elementary operations transform} \\ M \text{ in row echelon form} \\$

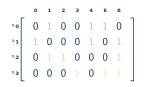


Maximum Load

Summary

Requirements (2)

- $\leftarrow M \text{ has full row rank } \mathfrak{n}$
- $\Leftrightarrow \ \ \text{elementary operations transform} \\ M \ \ \text{in row echelon form} \\$
- ⇐ only row and column permutations transform M in row echelon form

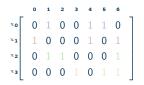


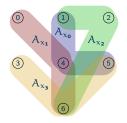
Maximum Load

Summary

Requirements (2)

- $\leftarrow M \text{ has full row rank } \mathfrak{n}$
- $\Leftrightarrow \ \ \text{elementary operations transform} \\ M \ \ \text{in row echelon form} \\$
- ⇐ only row and column permutations transform M in row echelon form
- $\Leftrightarrow \text{ 2-core of } \mathcal{H} \text{ is empty}$



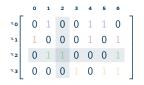


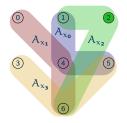
Maximum Load

Summary

Requirements (2)

- $\leftarrow M$ has full row rank n
- $\Leftrightarrow \ \ \text{elementary operations transform} \\ M \ \ \text{in row echelon form} \\$
- ⇐ only row and column permutations transform M in row echelon form
- $\Leftrightarrow \text{ 2-core of } \mathcal{H} \text{ is empty}$



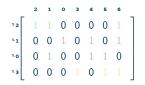


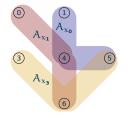
Maximum Load

Summary

Requirements (2)

- $\leftarrow M$ has full row rank n
- $\Leftrightarrow \ \ \text{elementary operations transform} \\ M \ \ \text{in row echelon form} \\$
- ⇐ only row and column permutations transform M in row echelon form
- $\Leftrightarrow \text{ 2-core of } \mathcal{H} \text{ is empty}$



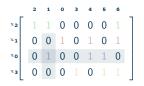


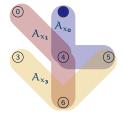
Maximum Load

Summary

Requirements (2)

- $\leftarrow M$ has full row rank n
- $\Leftrightarrow \ \ \text{elementary operations transform} \\ M \ \ \text{in row echelon form}$
- ⇐ only row and column permutations transform M in row echelon form
- $\Leftrightarrow \text{ 2-core of } \mathcal{H} \text{ is empty}$



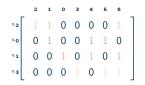


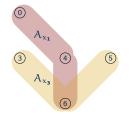
Maximum Load

Summary

Requirements (2)

- $\leftarrow M \text{ has full row rank } n$
- $\Leftrightarrow \mbox{ elementary operations transform } M \mbox{ in row echelon form }$
- ⇐ only row and column permutations transform M in row echelon form
- $\Leftrightarrow \text{ 2-core of } \mathcal{H} \text{ is empty}$



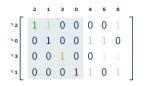


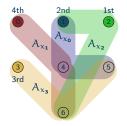
Maximum Load

Summary

Requirements (2)

- $\leftarrow M$ has full row rank n
- $\Leftrightarrow \ \ \text{elementary operations transform} \\ M \ \ \text{in row echelon form}$
- ⇐ only row and column permutations transform M in row echelon form
- $\Leftrightarrow \text{ 2-core of } \mathcal{H} \text{ is empty}$





Retrieval and Injective Mapping

Summary

Construction

Maximum Load

Peeling and Back-substitution

Greedy Algorithm:

Algorithm

Construction

Maximum Load

Retrieval and Injective Mapping

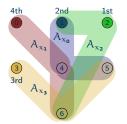
Summary

Peeling and Back-substitution

Greedy Algorithm:

determine row and column permutations

Algorithm



Retrieval and Injective Mapping

Summary

Algorithm

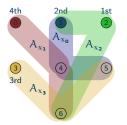
Maximum Load

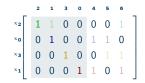
Construction

Peeling and Back-substitution

Greedy Algorithm:

- determine row and column permutations
- apply back-substitution





Retrieval and Injective Mapping

Algorithm

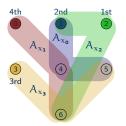
Maximum Load

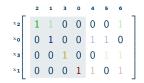
Summary

Peeling and Back-substitution

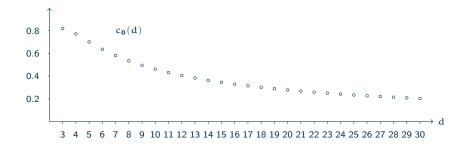
Greedy Algorithm:

- determine row and column permutations
- apply back-substitution
- running time O(n)





Appearance of 2-core [Molloy, 2004], [Cooper, 2004], [Kim, 2006],...



Maximum Load

Summary

New: Optimality

Question: Can we beat $c_0(3)\approx 0.8185$ using different edge sizes?

Maximum Load

Summary

New: Optimality

Question: Can we beat $c_0(3)\approx 0.8185$ using different edge sizes?

Theorem: [Rink, 2013] based on [Dietzfelbinger et al., 2010]

The analysis for the appearance of 2-cores in uniform hypergraphs can be extended to non-uniform hypergraphs with $\alpha_i \cdot n$ edges of size $d_i \ge 3$, leading to thresholds $c_0(\mathbf{d}, \boldsymbol{\alpha})$.

Maximum Load

Summary

New: Optimality

Question: Can we beat $c_0(3)\approx 0.8185$ using different edge sizes?

Theorem: [Rink, 2013] based on [Dietzfelbinger et al., 2010]

The analysis for the appearance of 2-cores in uniform hypergraphs can be extended to non-uniform hypergraphs with $\alpha_i \cdot n$ edges of size $d_i \geqslant 3$, leading to thresholds $c_0(d,\alpha)$.

Theorem: [Rink, 2013]

For two edge sizes d_0 and d_1 the maximum threshold

$$c_0(d_0, d_1) \coloneqq \max_{\alpha} c_0((d_0, d_1), (\alpha, 1-\alpha))$$

can be calculated efficiently, and for appropriate d_0 and $d_1,$ this value is larger than $c_0(3).$

Maximum Load

Summary

New: Optimality

Question: Can we beat $c_0(3)\approx 0.8185$ using different edge sizes?

Theorem: [Rink, 2013] based on [Dietzfelbinger et al., 2010]

The analysis for the appearance of 2-cores in uniform hypergraphs can be extended to non-uniform hypergraphs with $\alpha_i \cdot n$ edges of size $d_i \geqslant 3$, leading to thresholds $c_0(d,\alpha)$.

Theorem: [Rink, 2013]

For two edge sizes d_0 and d_1 the maximum threshold

$$c_0(d_0, d_1) \coloneqq \max_{\alpha} c_0((d_0, d_1), (\alpha, 1-\alpha))$$

can be calculated efficiently, and for appropriate d_0 and $d_1,$ this value is larger than $c_0(3).$

Proof idea:

* multivariate calculus, non-convex optimization

ntroduction Construction

Algorithm

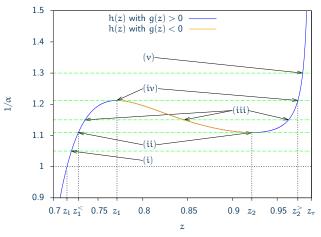
Dictionary and Membersh

Maximum Load

Retrieval and Injective Mapping

Summary

Non-convex Optimization

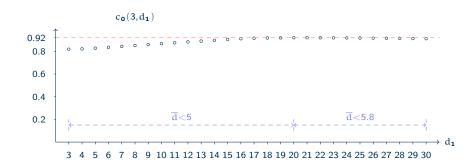


- * identify critical points in z-direction
- * determine $z'(d_0, d_1)$, the maximum point of the function of critical points
- * find z with smallest distance to z' that is legal global minimum point

Maximum Load

Summary

Thresholds for Mixed Degrees



Preliminaries

Dictionary and Membershi

Maximum Load

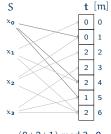
Retrieval and Injective Mapping

Summary

Performance: e.g. using factor
$$1.1 > \frac{1}{c_0(3, 16)}$$

Algorithm

- ► space utilization
 - \triangleright retrieval DS: $1.1 \cdot n \cdot \log|V|$



 $(0+2+1) \mod 3=0$

Preliminaries

Dictionary and Membershi

Maximum Load

Retrieval and Injective Mapping

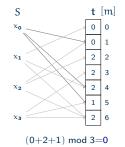
Summary

Performance: e.g. using factor $1.1 > \frac{1}{c_0(3, 16)}$

Algorithm

- space utilization
 - $\triangleright \ \ \mathsf{retrieval} \ \ \mathsf{DS:} \ \ 1.1 \cdot n \cdot \mathsf{log}|V|$

► construction time: O(n) (expected)



Preliminaries

Dictionary and Membershi

Maximum Load

Retrieval and Injective Mapping

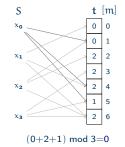
Summary

Performance: e.g. using factor $1.1 > \frac{1}{c_0(3, 16)}$

Algorithm

- space utilization
 - $\triangleright~$ retrieval DS: $1.1 \cdot n \cdot \text{log}|V|$

- ► construction time: O(n) (expected)
- ► cell probes: average < 6, worst-case 16



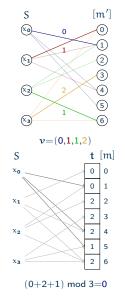
Maximum Load

Summary

Performance: e.g. using factor
$$1.1 > \frac{1}{c_0(3, 16)}$$

- space utilization
 - $\,\triangleright\,$ retrieval DS: $1.1 \cdot n \cdot \text{log}|V|$
 - $\triangleright \ \ \mbox{injective mapping:} \ \ m'=m=1.1\cdot n \Rightarrow d'=3$ hash functions for ${\mathcal B}'$

- ► construction time: O(n) (expected)
- ► cell probes: average < 6, worst-case 16



eliminaries Algorithm **Dictionary and Membersh**

Maximum Load

Summary

Construction

Summary

Performance: e.g. using factor
$$1.1 > \frac{1}{c_0(3, 16)}$$

- space utilization
 - $\,\triangleright\,$ retrieval DS: $1.1 \cdot n \cdot \text{log}|V|$
 - $\triangleright \ \ \mbox{injective mapping:} \ \ m'=m=1.1\cdot n \Rightarrow d'=3$ hash functions for \mathcal{B}'
 - $\triangleright \ 1.1 \cdot n \cdot \lceil \log 3 \rceil$
- ► construction time: O(n) (expected)
- cell probes: average < 6, worst-case 16



Preliminarie

ictionary and Membersh

Maximum Load

Summary

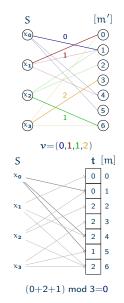
Construction

Algorithm

Summary

Performance: e.g. using factor
$$1.1 > \frac{1}{c_0(3, 16)}$$

- ► space utilization
 - $\triangleright~$ retrieval DS: $1.1 \cdot n \cdot \text{log}|V|$
 - $\triangleright \ \ \mbox{injective mapping:} \ \ m'=m=1.1\cdot n \Rightarrow d'=3$ hash functions for \mathcal{B}'
 - $\triangleright \ 1.1 \cdot n \cdot \lceil \log 3 \rceil$
 - ▷ $1.1 \cdot n \cdot 8/5$ (simple compression)
- ► construction time: O(n) (expected)
- cell probes: average < 6, worst-case 16



Summary

aries

Algorithm

ctionary and Membershi

Maximum Load

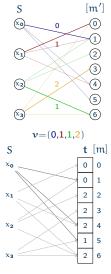
Construction

Summary

Performance: e.g. using factor
$$1.1 > \frac{1}{c_0(3, 16)}$$

- space utilization
 - $\,\triangleright\,$ retrieval DS: $1.1 \cdot n \cdot \text{log}|V|$
 - $\triangleright \ \ \mbox{injective mapping:} \ \ m'=m=1.1\cdot n \Rightarrow d'=3$ hash functions for \mathcal{B}'
 - ▷ $1.1 \cdot n \cdot \lceil \log 3 \rceil$
 - ▷ $1.1 \cdot n \cdot 8/5$ (simple compression)
- ► construction time: O(n) (expected)
- ► cell probes: average < 6, worst-case 16

Open: Show that c_0 for mixed edge sizes can be arbitrary close to 1.



 $(0+2+1) \mod 3=0$

Summary

Maximum Load

Construction

Summary

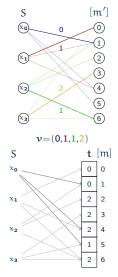
Performance: e.g. using factor
$$1.1 > \frac{1}{c_0(3, 16)}$$

Algorithm

- space utilization
 - \triangleright retrieval DS: $1.1 \cdot n \cdot \log |V|$
 - ▷ injective mapping: $m' = m = 1.1 \cdot n \Rightarrow d' = 3$ hash functions for \mathcal{B}'
 - ▶ 1.1 · n · [log 3]
 - ▶ $1.1 \cdot n \cdot 8/5$ (simple compression)
- construction time: O(n) (expected)
- ▶ cell probes: average < 6, worst-case 16</p>

Open: Show that c_0 for mixed edge sizes can be arbitrary close to 1.

Open: Given \overline{d} , determine mix of edge sizes that maximizes c_0 .



 $(0+2+1) \mod 3=0$

Thank you!

References I

Bast, H., Mehlhorn, K., Schäfer, G., and Tamaki, H. (2004). Matching Algorithms Are Fast in Sparse Random Graphs. In *Proc. 21st STACS*, volume 2996 of *LNCS*, pages 81–92. Springer.

Bohman, T. and Kim, J. H. (2006). A Phase Transition for Avoiding a Giant Component. *Random Struct. Algorithms*, 28(2):195–214.

Botelho, F. C., Pagh, R., and Ziviani, N. (2007). Simple and Space-Efficient Minimal Perfect Hash Functions. In *Proc. 10th WADS*, volume 4619 of *LNCS*, pages 139–150. Springer.

Chazelle, B., Kilian, J., Rubinfeld, R., and Tal, A. (2004). The Bloomier Filter: An Efficient Data Structure for Static Support Lookup Tables. In *Proc. 15th SODA*, pages 30–39. SIAM.

Cooper, C. (2004).

The Cores of Random Hypergraphs with a Given Degree Sequence. *Random Struct. Algorithms*, 25(4):353–375.

References II

Czech, Z. J., Havas, G., and Majewski, B. S. (1992). An Optimal Algorithm for Generating Minimal Perfect Hash Functions. *Inf. Process. Lett.*, 43(5):257–264.

Czumaj, A. and Stemann, V. (1997). Randomized Allocation Processes (Extended Abstract). In *Proc. 38th FOCS*, pages 194–203. IEEE.

Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R., and Rink, M. (2009). Tight Thresholds for Cuckoo Hashing via XORSAT. *CoRR*, abs/0912.0287.

Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R., and Rink, M. (2010). Tight Thresholds for Cuckoo Hashing via XORSAT. In *Proc. 37th ICALP (1)*, volume 6198 of *LNCS*, pages 213–225. Springer.

Dietzfelbinger, M. and Pagh, R. (2008). Succinct Data Structures for Retrieval and Approximate Membership (Extended Abstract).

In Proc. 35th ICALP (1), volume 5125 of LNCS, pages 385-396. Springer.

References III

Dietzfelbinger, M. and Rink, M. (2009). Applications of a Splitting Trick. In *Proc. 36th ICALP (1)*, volume 5555 of *LNCS*, pages 354–365. Springer, 2009.

Dietzfelbinger, M. and Rink, M. (2012). Towards Optimal Degree-Distributions for Left-Perfect Matchings in Random Bipartite Graphs. In *Proc. 7th CSR*, volume 7353 of *LNCS*, pages 99–111. Springer.

Drmota, M. and Kutzelnigg, R. (2012). A Precise Analysis of Cuckoo Hashing. *ACM Transactions on Algorithms*, 8(2):11:1–11:36.

Dubois, O. and Mandler, J. (2002). The 3-XORSAT Threshold. In *Proc. 43rd FOCS*, pages 769–778. IEEE Computer Society.

Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 5:17–61.

References IV

Fotakis, D., Pagh, R., Sanders, P., and Spirakis, P. G. (2003). Space Efficient Hash Tables with Worst Case Constant Access Time. In *Proc. 20th STACS*, volume 2607 of *LNCS*, pages 271–282. Springer.

Fountoulakis, N. and Panagiotou, K. (2010). Orientability of Random Hypergraphs and the Power of Multiple Choices. In *Proc. 37th ICALP (1)*, volume 6198 of *LNCS*, pages 348–359. Springer.

Frieze, A. M. and Melsted, P. (2009). Maximum Matchings in Random Bipartite Graphs and the Space Utilization of Cuckoo Hashtables. *CoRR*, abs/0910.5535.

Hopcroft, J. E. and Karp, R. M. (1973). An $n^{5/2}$ Algorithm for Maximum Matchings in Bipartite Graphs. *SIAM J. Comput.*, 2(4):225–231.

Kim, J. H. (2006).

Poisson cloning model for random graphs. In Proc. ICM Madrid 2006 Vol. III, pages 873-898. EMS Ph.

References V

Majewski, B. S., Wormald, N. C., Havas, G., and Czech, Z. J. (1996). A Family of Perfect Hashing Methods. *Comput. J.*, 39(6):547–554.

Molloy, M. (2004).

The pure literal rule threshold and cores in random hypergraphs. In *Proc. 15th SODA*, pages 672–681. SIAM.

Pagh, R. (2001).

On the cell probe complexity of membership and perfect hashing. In *Proc. 33rd STOC*, pages 425–432. ACM.

Pagh, R. and Rodler, F. F. (2001).

Cuckoo Hashing. In Proc. 9th ESA, volume 2161 of LNCS, pages 121–133. Springer.

Rink, M. (2013).

Mixed Hypergraphs for Linear-time Construction of Denser Hashing-based Data Structures.

In Proceedings 39th SOFSEM. Springer.

To appear.

References VI

Sanders, P. (2004).

Algorithms for Scalable Storage Servers.

In Proc. 30th SOFSEM, volume 2932 of LNCS, pages 82-101. Springer.

Wiedemann, D. H. (1986).

Solving Sparse Linear Equations Over Finite Fields.

IEEE Transactions on Information Theory, 32(1):54–62.