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k-ary Cuckoo Hashing

x yz

x

h3 h1 h2

1 2 . . . m

[Fotakis, Pagh, Sanders, and Spirakis, 2005]:
n keys, set S ⊆ U

k hash functions hi : U → [m] = {1, . . . ,m}

Store x in one of T [hi(x)], i = 1, . . . , k.

Maximum one key per cell.

If this is possible for all x ∈ S: Constant lookup time.
Here only: Static case.
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Placement

For simpler notation: Key set is S = [n].

For key i ∈ S the set Ai = {h1(i), h2(i), . . . , hk(i)} is a (fully)
random subset of [m] of size k.

Definition
C.H. works for (Ai)1≤i≤n
if there is a injective mapping σ : [n]→ [m]
such that σ(i) ∈ Ai , for all i ∈ [n].
(Can store keys from S with no collision.)
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Thresholds (1)

C.H. for k = 2: [Pagh and Rodler, 2001, 2004]
Well understood.

For n
m < 0.5: Pr(C.H. works) = 1− o(1).

Related to appearance of giant connect component in cuckoo graph.

C.H. for k ≥ 3:

Theorem ([Fotakis et al., 2005])
There are C1 > C2 > 0 such that:

n
m ≤ 1− e−C2·k ,m→∞⇒ Pr(C.H. works) = 1− o(1) ,
n
m ≥ 1− e−C1·k ,m→∞⇒ Pr(C.H. works) = o(1) .
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Thresholds (2)

Would like: Sharp Thresholds ck for k ≥ 3,
that is ck < 1 such that for all c:

n
m ≤ c < ck , m→∞ ⇒ Pr(C.H. works) = 1− o(1) ,
n
m ≥ c > ck , m→∞ ⇒ Pr(C.H. works) = o(1) .

Known in 2008:
[Bohman and Kim, 2006]: Solution for k = 4.

[Dietzfelbinger and Pagh, 2008]: Quite good lower bounds
(≈ 1− 1.45e−k) for ck via a result by [Calkin, 1997] on the rank of
certain random matrices.
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Solutions

Summer/Fall 2009:
[Fountoulakis and Panagiotou, 2009] (arXiv, ICALP ’10)

[Frieze and Melsted, 2009] (arXiv)

[DGMMPR 2009] (arXiv, ICALP ’10)

independently solve the problem.

[Gao and Wormald, 2010] solve a closely related problem.
(No overlap in the results but in the methods.)
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A Problem with Many Faces

k-ary C.H. works
def
= Injective mapping of keys to table cells

⇔ Left perfect matching in random bipartite graphs with left degree k

⇔ Edge orientation in random k-uniform hypergraphs

⇔ 1-submatrices in random matrices with rows of weight k
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Random Bipartite graph Bk
m,n

m right nodes, n left nodes with neighbor sets of size k.

Neighbor sets for left nodes chosen independently at random.

Question: “∃ left-perfect matching for Bk
m,n?”

Is there a matching in Bk
m,n that covers all left nodes?
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Random Hypergraph Hk
m,n

Node set [m], n hyperedges of size k.

Hyperedges chosen independently at random.

Question: “Is Hk
m,n 1-orientable?”

Can one “direct” each hyperedge e in Hk
m,n towards one of its

nodes such that each node is used for at most one edge?
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Random Matrix Mk
n,m

[m]
1 2 3 4 5 6 7 8

A1: 0 1 0 0 1 0 0 1
A2: 1 0 1 0 0 0 1 0
A3: 0 1 0 0 1 0 1 0
A4: 0 1 1 1 0 0 0 0
A5: 1 0 1 0 0 1 0 0

n ×m matrixMk
n,m over {0, 1}

Rows of weight (number of 1’s) exactly k, chosen randomly.

Question: “∃ submatrix ≥ permutation matrix?”
Is there an injective mapping σ : [n]→ [m] such that
Mk

n,m(i , σ(i)) = 1 for all i?
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Relationship

Obvious:
k-ary C.H.,

degree-k left-perfect matching in bipartite graphs,

k-uniform hypergraph orientation,

weight-k-rows permutation submatrix

are just reformulations of the same problem.
They have the same threshold density (if any).
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The 2-core

Algorithm 1: Peeling Hypergraph
Input: Hk

m,n = (V ,E )
while ∃ v ∈ V that is covered by exactly one edge e ∈ E do

direct e towards v ; // log information
delete e and v ;

Output: Maximal subhypergraph Ck
m̂,n̂ with min-degree ≥ 2:

The “2-core”.
Analogous procedure in other formulations: Always get the
(equivalent) “2-core”.
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Relationship

k-ary C.H. works:
⇔ edges of 2-core of corr. hypergraph can be 1-oriented

⇔ 2-core of corr. bipartite graph has a left-perfect matching

⇔ 2-core of corr. matrix has a injective mapping σ : rows→ cols
with entry (i , σ(i)) = 1 for all rows i in the 2-core.
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Appearance 2-core
Analysis of 2-core by
[Molloy, 2005],[Cooper, 2004],[Dubois and Mandler, 2002] and others.

gk(β) :=
1
k ·

β

Pr (Po(β) ≥ 1)k−1 , β > 0 .
c

β

g3(β)

0.75

1.0

0.5 1.5 2.5

c∗
k

β∗
k

c=0.9

β(c)

Convex in (0,∞) ⇒ ∃ local=global minimum (β∗
k , c∗

k ).

For c < c∗
k the 2-core of Hk

m,n is empty w.h.p..

For c > c∗
k there is unique β(c) right of the β∗

k s.t. gk(β(c)) = c.
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Edge Density of 2-core

Theorem ([Molloy, 2005],[Cooper, 2004],[Dubois and Mandler, 2002],. . . )

Given c = n
m of Hk

m,n, then the edge density n̂
m̂ of the 2-core Ck

m̂,n̂
is tightly concentrated around

f (β(c)) = β(c) · Pr (Po(β(c)) ≥ 1)
k · Pr (Po(β(c)) ≥ 2) .

Definition
Let ck be the unique c for which it holds: f (β(c)) = 1.

“ck is the density n
m of the hypergraph, where the density n̂

m̂ of the
2-core is 1.”
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2-core Density and Cuckoo Hashing

Let n
m > ck :

⇒ Edge density in the 2-core of Hk
m,n is ≥ 1+ δ(c).

⇒ C. H. can’t work! (more egdes/keys than nodes/buckets)

Let n
m < ck :

⇒ Edge density in the 2-core of Hk
m,n is ≤ 1− δ(c).

⇒ ? (Need edge density ≤ 1 for all subhypergraphs of the 2-core.)
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Interesting Case: n̂
m̂ ≤ 1

Other works - the stony path{
[Fountoulakis/Panagiotou 2009]
[Frieze/Melsted 2009]

}
show by direct calculations

that if
{

n̂
m̂ ≤ 1− δ
m̂ = n̂

}
then w.h.p. there is no subhypergraph with

edge density > 1.⇒ C. H. works!
({

12
20

}
pages of calculations.

)
Our choice - the lazy way
We show that

the (essentially) known density thresholds for Random k-XORSAT
are the same as for k-ary cuckoo hashing

the thresholds are at the place where the edge density of the 2-core
of the relevant hypergraph grows beyond 1.
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Random k-XORSAT

(X 1 ⊕ X2 ⊕ X 4) ∧ (X 2 ⊕ X 4 ⊕ X5) ∧ (X3 ⊕ X 4 ⊕ X5)

n clauses, m variables

k literals per clause

Question: “∃ an assignment x = (x1, . . . , xm) that gives all
clauses value 1?”

Equivalent: Solvability of random sparse systemMk
n,m · x = b.

(Note: X = 1⊕ X )

X1 ⊕ X2 ⊕ X4 = 1 and X2 ⊕ X4 ⊕ X5 = 1 and X3 ⊕ X4 ⊕ X5 = 0
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Linear System

Mk
n,m · x = b:

Mk
n,m is an n ×m matrix, 0-1-valued, exactly k 1’s per row.

b ∈ {0, 1}n is random.

Known in k-XORSAT research (e.g.[Dubois and Mandler, 2002]):
Mk

n,m is equivalent to a random hypergraph Hk
m,n.

Peeling off columns with exactly one 1 and the corresponding
rows

Does not change the solvability of the system.

It remains the n̂× m̂ matrixMk
n̂,m̂ that corresponds to the 2-core of

Hk
m,n and a reduced right hand side b̂.
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The Key Step
Theorem ([Dubois and Mandler, 2002])

n̂
m̂ ≤ c < 1⇒ Pr(Mk

n̂,m̂ · x = b̂ solvable) = 1− o(1) .

(Claimed for all k ≥ 3, proved for k = 3.)

With Pr
(
Mk

n̂,m̂ · x = b̂ solvable | Rank(Mk
n̂,m̂) < n̂

)
≤ 0.5

it follows:
Pr
(
Mk

n̂,m̂ has full row rank
)
= 1− o(1)

⇒ Pr
(
Mk

n̂,m̂ has full rank n̂ × n̂ sub-/permutation matrix
)
= 1− o(1)

⇒ Pr
(
cuckoo hashing works w.r.t. rows ofMk

n̂,m̂

)
= 1− o(1) .

. . . which is out theorem.
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Fractional Left Degrees

Generalization of the formulas to compute threshold ck for
arbitrary degree distributions.

Question: “What is the optimal distribution?”

Theorem
Let κx be the expected number of hash values for key x. Then
Pr(C.H works) is maximized if
κx is concentrated on {bκxc, bκxc+ 1}.
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Larger Buckets

Assume a bucket can hold up to ` keys instead of just 1.

Conjecture
The threshold for this to work is where the “(`+ 1)-core” of Hk

m,n
exceeds density `.

Known for k = 2 and ` ≥ 2 [Cain et al., 2007],
[Fernholz and Ramachandran, 2007].

Recently learned: Proved for all k ≥ 3 and ` sufficiently large by
[Gao and Wormald, 2010].

27 / 31
Tight Tresholds for Cuckoo Hashing,via XORSAT



Introduction Equivalent Formulations Role of 2-Cores Thresholds for Cuckoo Hashing Extensions

A Linear Time Algorithm (1)

Adaption of “selfless-algorithm” [Sanders, 2004].
Algorithm 2: (k, `)-Generalized Selfless
Input: Hypergraph Hk

m,n = (V ,E ) with m nodes and n edges.
for t ← 1 to n do

V0 ← {v ∈ V : v is incident to undirected edge};
E0 ← {e ∈ E : e is undirected};
find v ∈ V0 with smallest priority π(v);
if π(v) > ` then return failure;
choose e ∈ E0 ∩ {e : v ∈ e} with minimum weight ω(e);
direct e towards v ;
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A Linear Time Algorithm (2)

D(v) set of hyperedges directed towards node v

U(v) set of undirected hyperedges incident to node v

Edge weight:

ω(e)← |{v ∈ e : |D(v)| < `}|

Node priority:

π(v) =


0, if |U(v)|+ |D(v)| ≤ `∑
e∈U(v)

1
ω(e) + |D(v)|, otherwise
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Generalized Selfless vs Perfect Matching
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Figure : k = 3; theoretical threshold ck ≈ 0.91794, interval size 0.004
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Open: Analyze one of the known dynamic versions (insertions).

Thank you!

31 / 31
Tight Tresholds for Cuckoo Hashing,via XORSAT



Algorithm Thresholds Bibliography

Larger Buckets
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Figure : k = 3, ` = 2; conjectured threshold value ck,2 ≈ 1.97640
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Non-integer Choices
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Figure : Various distributions with mean κx = 3; (x , y , z) stands for
fraction of keys with (k = 2, k = 3, k = 4); ` = 2,m = 105.
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Integral

`\k 2 3 4 5 6
2 − 0.9179352767 0.9767701649 0.9924383913 0.9973795528
3 1.7940237365 1.9764028279 1.9964829679 1.9994487201 1.9999137473
4 2.8774628058 2.9918572178 2.9993854302 2.9999554360 2.9999969384
5 3.9214790971 3.9970126256 3.9998882644 3.9999962949 3.9999998884
6 4.9477568093 4.9988732941 4.9999793407 4.9999996871 4.9999999959
7 5.9644362395 5.9995688805 5.9999961417 5.9999999733 5.9999999998
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Non-Integral

κ∗ cκ∗,2
2.25 0.6666666667
2.50 0.8103423635
2.75 0.8788457372
3.00 0.9179352767
3.25 0.9408047937
3.50 0.9570796377
3.75 0.9685811888
4.00 0.9767701649

κ∗ cκ∗,2
4.25 0.9825693463
4.50 0.9868637629
4.75 0.9900548807
5.00 0.9924383913
5.25 0.9942189481
5.50 0.9955692011
5.75 0.9965961383
6.00 0.9973795528
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