Tight Tresholds for Cuckoo Hashing via XORSAT

Martin Dietzfelbinger¹ Andreas Goerdt Michael Mitzenmacher Andrea Montanari Rasmus Pagh <u>Michael Rink¹</u>

15.06.2010

¹Research supported by DFG grant DI 412/10-1.

Tight Tresholds for Cuckoo Hashing, via XORSAT

1 / 31

k-ary Cuckoo Hashing

[Fotakis, Pagh, Sanders, and Spirakis, 2005]:

- *n* keys, set $S \subseteq U$
- k hash functions $h_i: U \to [m] = \{1, \dots, m\}$
- Store x in one of $T[h_i(x)]$, $i = 1, \ldots, k$.
- Maximum one key per cell.

If this is possible for all $x \in S$: Constant lookup time. Here only: **Static case**.

Placement

For simpler notation: Key set is S = [n].

For key $i \in S$ the set $A_i = \{h_1(i), h_2(i), \dots, h_k(i)\}$ is a (fully) random subset of [m] of size k.

Definition

C.H. works for $(A_i)_{1 \le i \le n}$ if there is a injective mapping $\sigma : [n] \to [m]$ such that $\sigma(i) \in A_i$, for all $i \in [n]$. (Can store keys from S with no collision.)

Thresholds (1)

C.H. for k = 2: [Pagh and Rodler, 2001, 2004]

- Well understood.
- For $\frac{n}{m} < 0.5$: Pr(C.H. works) = 1 o(1).
- Related to appearance of giant connect component in cuckoo graph.

C.H. for $k \geq 3$:

Theorem ([Fotakis et al., 2005]) There are $C_1 > C_2 > 0$ such that: $\frac{n}{m} \le 1 - e^{-C_2 \cdot k}, m \to \infty \Rightarrow \Pr(C.H. \ works) = 1 - o(1),$ $\frac{n}{m} \ge 1 - e^{-C_1 \cdot k}, m \to \infty \Rightarrow \Pr(C.H. \ works) = o(1).$

Thresholds (2)

Would like: Sharp Thresholds c_k for $k \ge 3$, that is $c_k < 1$ such that for all c:

$$\frac{n}{m} \leq c < c_k, \ m \to \infty \quad \Rightarrow \quad \mathsf{Pr}(\mathsf{C}.\mathsf{H}. \ \mathsf{works}) = 1 - o(1) \ ,$$
$$\frac{n}{m} \geq c > c_k, \ m \to \infty \quad \Rightarrow \quad \mathsf{Pr}(\mathsf{C}.\mathsf{H}. \ \mathsf{works}) = o(1) \ .$$

Known in 2008:

- [Bohman and Kim, 2006]: Solution for k = 4.
- [Dietzfelbinger and Pagh, 2008]: Quite good lower bounds $(\approx 1 1.45e^{-k})$ for c_k via a result by [Calkin, 1997] on the rank of certain random matrices.

Solutions

Summer/Fall 2009:

- [Fountoulakis and Panagiotou, 2009] (arXiv, ICALP '10)
- [Frieze and Melsted, 2009] (arXiv)
- [DGMMPR 2009] (arXiv, ICALP '10)

independently solve the problem.

• [Gao and Wormald, 2010] solve a closely related problem. (No overlap in the results but in the methods.)

Role of 2-Cores

Thresholds for Cuckoo Hashing

Extensions

3 Thresholds for Cuckoo Hashing

Role of 2-Cores

Thresholds for Cuckoo Hashing

Extensions

2 Role of 2-Cores

3 Thresholds for Cuckoo Hashing

4 Extensions

A Problem with Many Faces

k-ary C.H. works

- $\stackrel{\text{def}}{=}$ Injective mapping of keys to table cells
- \Leftrightarrow Left perfect matching in random bipartite graphs with left degree k
- \Leftrightarrow Edge orientation in random k-uniform hypergraphs
- \Leftrightarrow 1-submatrices in random matrices with rows of weight k

Extensions

Random Bipartite graph $\mathcal{B}_{m,n}^k$

- *m* right nodes, *n* left nodes with neighbor sets of size *k*.
- Neighbor sets for left nodes chosen independently at random.

Question: " \exists left-perfect matching for $\mathcal{B}_{m,n}^k$?" Is there a matching in $\mathcal{B}_{m,n}^k$ that covers all left nodes?

(Equivalent Formulations)

Role of 2-Cores

Thresholds for Cuckoo Hashing

Extensions

Random Hypergraph $\mathcal{H}_{m,n}^k$

- Node set [m], n hyperedges of size k.
- Hyperedges chosen independently at random.

Question: "Is $\mathcal{H}_{m,n}^k$ 1-orientable?"

Can one "direct" each hyperedge e in $\mathcal{H}_{m,n}^k$ towards one of its nodes such that each node is used for at most one edge?

Random Matrix $\mathcal{M}_{n,m}^k$

- $n \times m$ matrix $\mathcal{M}_{n,m}^k$ over $\{0,1\}$
- Rows of weight (number of 1's) exactly k, chosen randomly.

Question: " \exists submatrix \geq permutation matrix?" Is there an injective mapping $\sigma : [n] \rightarrow [m]$ such that $\mathcal{M}_{n,m}^k(i, \sigma(i)) = 1$ for all *i*?

Relationship

Obvious:

- *k*-ary C.H.,
- degree-k left-perfect matching in bipartite graphs,
- k-uniform hypergraph orientation,
- weight-k-rows permutation submatrix

are just reformulations of the same problem. They have the same threshold density (if any).

(Role of 2-Cores)

Thresholds for Cuckoo Hashing

Extensions

3 Thresholds for Cuckoo Hashing

4 Extensions

Tight Tresholds for Cuckoo Hashing, via XORSAT

14 / 31

The 2-core

Algorithm 1: Peeling Hypergraph

Input: $\mathcal{H}_{m,n}^k = (V, E)$

while $\exists v \in V$ that is covered by exactly one edge $e \in E$ do

direct *e* towards *v*; // log information

delete e and v;

Output: Maximal subhypergraph $C_{\hat{m},\hat{n}}^k$ with min-degree ≥ 2 : The "2-core".

Analogous procedure in other formulations: Always get the (equivalent) "2-core".

Relationship

k-ary C.H. works:

- \Leftrightarrow edges of 2-core of corr. hypergraph can be 1-oriented
- \Leftrightarrow 2-core of corr. bipartite graph has a left-perfect matching
- \Leftrightarrow 2-core of corr. matrix has a injective mapping σ : rows \rightarrow cols with entry $(i, \sigma(i)) = 1$ for all rows *i* in the 2-core.

Appearance 2-core

Analysis of 2-core by [Molloy, 2005], [Cooper, 2004], [Dubois and Mandler, 2002] and others.

• Convex in $(0,\infty) \Rightarrow \exists$ local=global minimum (β_k^*, c_k^*) .

- For $c < c_k^*$ the 2-core of $\mathcal{H}_{m,n}^k$ is empty w.h.p..
- For $c > c_k^*$ there is unique $\beta(c)$ right of the β_k^* s.t. $g_k(\beta(c)) = c$.

Edge Density of 2-core

Theorem ([Molloy, 2005],[Cooper, 2004],[Dubois and Mandler, 2002],...)

Given $c = \frac{n}{m}$ of $\mathcal{H}_{m,n}^k$, then the edge density $\frac{\hat{n}}{\hat{m}}$ of the 2-core $\mathcal{C}_{\hat{m},\hat{n}}^k$ is tightly concentrated around

$$f(eta(c)) = rac{eta(c) \cdot \Pr\left(\operatorname{Po}(eta(c)) \geq 1
ight)}{k \cdot \Pr\left(\operatorname{Po}(eta(c)) \geq 2
ight)}.$$

Definition

Let c_k be the unique c for which it holds: $f(\beta(c)) = 1$.

" c_k is the density $\frac{n}{m}$ of the hypergraph, where the density $\frac{\hat{n}}{\hat{m}}$ of the 2-core is 1."

Tight Tresholds for Cuckoo Hashing,via XORSAT

18 / 31

2-core Density and Cuckoo Hashing

Let $\frac{n}{m} > c_k$:

- \Rightarrow Edge density in the 2-core of $\mathcal{H}^k_{m,n}$ is $\geq 1 + \delta(c)$.
- \Rightarrow C. H. can't work! (more egdes/keys than nodes/buckets)

Let $\frac{n}{m} < c_k$:

- \Rightarrow Edge density in the 2-core of $\mathcal{H}_{m,n}^k$ is $\leq 1 \delta(c)$.
- \Rightarrow ? (Need edge density \leq 1 for all subhypergraphs of the 2-core.)

Role of 2-Cores

(Thresholds for Cuckoo Hashing)

Extensions

3 Thresholds for Cuckoo Hashing

4 Extensions

Interesting Case: $\frac{\hat{n}}{\hat{m}} \leq 1$

$$\begin{array}{l} \label{eq:constraint} \textbf{Other works - the stony path} \\ \left\{ \begin{array}{l} [\mathsf{Fountoulakis/Panagiotou\ 2009]} \\ [\mathsf{Frieze/Melsted\ 2009]} \end{array} \right\} \text{show by direct calculations} \\ \\ \text{that if} \left\{ \begin{array}{l} \frac{\hat{n}}{\hat{m}} \leq 1 - \delta \\ \hat{m} = \hat{n} \end{array} \right\} \text{then w.h.p. there is no subhypergraph with} \\ \\ \\ \text{edge density } > 1. \Rightarrow \mathsf{C.\ H.\ works!} \ \left(\left\{ \frac{12}{20} \right\} \text{ pages of calculations.} \right) \\ \end{array} \right.$$

Our choice - the lazy way

We show that

- the (essentially) known density thresholds for Random *k*-XORSAT are the same as for *k*-ary cuckoo hashing
- the thresholds are at the place where the edge density of the 2-core of the relevant hypergraph grows beyond 1.

Random k-XORSAT

$$(\overline{X}_1\oplus X_2\oplus \overline{X}_4)\wedge (\overline{X}_2\oplus \overline{X}_4\oplus X_5)\wedge (X_3\oplus \overline{X}_4\oplus X_5)$$

- *n* clauses, *m* variables
- k literals per clause

Question: " \exists an assignment $x = (x_1, \ldots, x_m)$ that gives all clauses value 1?"

Equivalent: Solvability of random sparse system $\mathcal{M}_{n,m}^k \cdot x = b$. (Note: $\overline{X} = 1 \oplus X$)

 $X_1 \oplus X_2 \oplus X_4 = 1$ and $X_2 \oplus X_4 \oplus X_5 = 1$ and $X_3 \oplus X_4 \oplus X_5 = 0$

Tight Tresholds for Cuckoo Hashing, via XORSAT

22 / 31

Linear System

 $\mathcal{M}_{n,m}^k \cdot x = b$:

- $\mathcal{M}_{n,m}^k$ is an $n \times m$ matrix, 0-1-valued, exactly k 1's per row.
- $b \in \{0,1\}^n$ is random.

Known in *k*-XORSAT research (e.g.[Dubois and Mandler, 2002]): $\mathcal{M}_{n,m}^k$ is equivalent to a random hypergraph $\mathcal{H}_{m,n}^k$.

Peeling off columns with exactly one 1 and the corresponding rows

- Does not change the solvability of the system.
- It remains the $\hat{n} \times \hat{m}$ matrix $\mathcal{M}_{\hat{n},\hat{m}}^k$ that corresponds to the 2-core of $\mathcal{H}_{m,n}^k$ and a reduced right hand side \hat{b} .

The Key Step

Theorem ([Dubois and Mandler, 2002])

$$rac{\hat{n}}{\hat{m}} \leq c < 1 \Rightarrow \mathsf{Pr}(\mathcal{M}^k_{\hat{n},\hat{m}} \cdot x = \hat{b} \; \textit{solvable}) = 1 - o(1)$$
 .

(Claimed for all $k \ge 3$, proved for k = 3.)

With $\Pr\left(\mathcal{M}_{\hat{n},\hat{m}}^{k} \cdot x = \hat{b} \text{ solvable } | \operatorname{Rank}(\mathcal{M}_{\hat{n},\hat{m}}^{k}) < \hat{n}\right) \leq 0.5$ it follows:

$$\mathsf{Pr}\left(\mathcal{M}^k_{\hat{n},\hat{m}} ext{ has full row rank}
ight) = 1 - o(1)$$

⇒ $\Pr\left(\mathcal{M}_{\hat{n},\hat{m}}^{k} \text{ has full rank } \hat{n} \times \hat{n} \text{ sub-/permutation matrix}\right) = 1 - o(1)$ ⇒ $\Pr\left(\text{cuckoo hashing works w.r.t. rows of } \mathcal{M}_{\hat{n},\hat{m}}^{k}\right) = 1 - o(1)$ which is out theorem. \Box

Role of 2-Cores

Thresholds for Cuckoo Hashing

- 2 Role of 2-Cores
- 3 Thresholds for Cuckoo Hashing

Fractional Left Degrees

Generalization of the formulas to compute threshold c_k for arbitrary degree distributions.

Question: "What is the optimal distribution?"

Theorem

Let κ_x be the expected number of hash values for key x. Then Pr(C.H works) is maximized if κ_x is concentrated on $\{\lfloor \kappa_x \rfloor, \lfloor \kappa_x \rfloor + 1\}$.

Larger Buckets

Assume a bucket can hold up to ℓ keys instead of just 1.

Conjecture

The threshold for this to work is where the " $(\ell + 1)$ -core" of $\mathcal{H}_{m,n}^k$ exceeds density ℓ .

- Known for k = 2 and l ≥ 2 [Cain et al., 2007], [Fernholz and Ramachandran, 2007].
- Recently learned: Proved for all k ≥ 3 and ℓ sufficiently large by [Gao and Wormald, 2010].

A Linear Time Algorithm (1)

Adaption of "selfless-algorithm" [Sanders, 2004].

Algorithm 2: (k, ℓ) -Generalized Selfless

Input: Hypergraph $\mathcal{H}_{m,n}^{k} = (V, E)$ with *m* nodes and *n* edges. for $t \leftarrow 1$ to *n* do $V_{0} \leftarrow \{v \in V : v \text{ is incident to undirected edge}\};$ $E_{0} \leftarrow \{e \in E : e \text{ is undirected}\};$ find $v \in V_{0}$ with smallest priority $\pi(v)$; if $\pi(v) > \ell$ then return failure; choose $e \in E_{0} \cap \{e : v \in e\}$ with minimum weight $\omega(e)$; direct *e* towards *v*;

A Linear Time Algorithm (2)

- $\mathcal{D}(v)$ set of hyperedges directed towards node v
- $\mathcal{U}(v)$ set of undirected hyperedges incident to node v

Edge weight:

$$\omega(e) \leftarrow |\{v \in e : |\mathcal{D}(v)| < \ell\}|$$

Node priority:

$$\pi(\mathbf{v}) = egin{cases} 0, & ext{if } |\mathcal{U}(\mathbf{v})| + |\mathcal{D}(\mathbf{v})| \leq \ell \ \sum\limits_{\mathbf{e} \in \mathcal{U}(\mathbf{v})} rac{1}{\omega(\mathbf{e})} + |\mathcal{D}(\mathbf{v})|, & ext{otherwise} \end{cases}$$

Generalized Selfless vs Perfect Matching

Figure : k = 3; theoretical threshold $c_k \approx 0.91794$, interval size 0.004

Tight Tresholds for Cuckoo Hashing, via XORSAT

30 / 31

Open: Analyze one of the known dynamic versions (insertions).

Thank you!

Larger Buckets

Figure : k = 3, $\ell = 2$; conjectured threshold value $c_{k,2} \approx 1.97640$

Non-integer Choices

Figure : Various distributions with mean $\kappa_x = 3$; (x, y, z) stands for fraction of keys with (k = 2, k = 3, k = 4); $\ell = 2, m = 10^5$.

Integral

$\ell \backslash k$	2	3	4	5	6
2	-	0.9179352767	0.9767701649	0.9924383913	0.9973795528
3	1.7940237365	1.9764028279	1.9964829679	1.9994487201	1.9999137473
4	2.8774628058	2.9918572178	2.9993854302	2.9999554360	2.9999969384
5	3.9214790971	3.9970126256	3.9998882644	3.9999962949	3.9999998884
6	4.9477568093	4.9988732941	4.9999793407	4.9999996871	4.9999999959
7	5.9644362395	5.9995688805	5.9999961417	5.9999999733	5.9999999998

Non-Integral

κ^*	$c_{\kappa^*,2}$	κ^*	$c_{\kappa^*,2}$
2.25	0.6666666667	4.25	0.9825693463
2.50	0.8103423635	4.50	0.9868637629
2.75	0.8788457372	4.75	0.9900548807
3.00	0.9179352767	5.00	0.9924383913
3.25	0.9408047937	5.25	0.9942189481
3.50	0.9570796377	5.50	0.9955692011
3.75	0.9685811888	5.75	0.9965961383
4.00	0.9767701649	6.00	0.9973795528

Bibliography (1)

Bohman, T. and Kim, J. H. (2006). A Phase Transition for Avoiding a Giant Component. In *Random Struct. Algorithms* 28(2), pages 195–214.

Cain, J. A., Sanders, P., and Wormald, N. C. (2007). The Random Graph Threshold for *k*-orientiability and a Fast Algorithm for Optimal Multiple-Choice Allocation. In Proc. 18th *SODA*, pages 469–476.

Calkin, N. J. (1997).

Dependent Sets of Constant Weight Binary Vectors. In *Combinatorics, Probability & Computing* 6(3), pages 263–271.

Cooper, C. (2004).

The Cores of Random Hypergraphs with a Given Degree Sequence. In *Random Struct. Algorithms* 25(4), pages 353–375.

Bibliography (2)

Creignou, N. and Daudé, H. (2003). Smooth and sharp thresholds for random *k*-xor-cnf satisfiability. In *ITA* 37(2), pages 127–147.

Dietzfelbinger, M. and Pagh, R. (2008).

Succinct Data Structures for Retrieval and Approximate Membership (Extended Abstract). In Proc. 35th *ICALP* (1), pages 385–396.

Dubois, O. and Mandler, J. (2002). The 3-XORSAT Threshold. In Proc. 43rd *FOCS*, pages 769–778.

Fernholz, D. and Ramachandran, V. (2007). The *k*-orientability Thresholds for $G_{n,p}$. In Proc. 18th *SODA*, pages 459–468.

Bibliography (3)

Fotakis, D., Pagh, R., Sanders, P., and Spirakis, P. G. (2005). Space Efficient Hash Tables with Worst Case Constant Access Time.

In Theory Comput. Syst. 38(2), pages 229–248.

Fountoulakis, N. and Panagiotou, K. (2009). Sharp Load Thresholds for Cuckoo Hashing. In *CoRR*, abs/0910.5147.

Frieze, A. M. and Melsted, P. (2009). Maximum Matchings in Random Bipartite Graphs and the Space Utilization of Cuckoo Hashtables.

In CoRR, abs/0910.5535.

Thresholds

Bibliography (4)

Gao, P. and Wormald, N. C. (2010). Load Balancing and Orientability Thresholds for Random Hypergraphs. In Proc. 42nd *STOC*, pages 97–104.

Molloy, M. (2005).

Cores in Random Hypergraphs and Boolean Formulas. In *Random Struct. Algorithms* 27(1), pages 124–135.

Pagh, R. and Rodler, F. F. (2001). Cuckoo Hashing. In Proc. 9th *ESA*, pages 121–133.

Bibliography (5)

Pagh, R. and Rodler, F. F. (2004). Cuckoo hashing.

In J. Algorithms 51(2), pages 122–144.

Sanders. P.

Algorithms for Scalable Storage Servers. In Proc. 30th SOFSEM, pages 82–101.